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Abstract 

 

This research focuses on the use of Esri’s ArcFuels and Missoula Fire Sciences Laboratory’s 

FlamMap to produce a wildfire exposure analysis on structures affected by the Charlotte Fire. 

Exposure analysis involves producing both conditional flame length and burn probability, 

which are combined to determine a structure’s wildfire risk. The individual datasets within 

the model were tested for accuracy and influence on structure loss. A one-tailed t-test was 

used to test if the means were greater for homes with or without loss for conditional flame 

length, burn probability, slope, and canopy datasets. A Chi-Square test was performed to test 

for significant differences within the aspect and surface fuel datasets. The results of these 

analyses were used to illustrate possible limitations within the wildfire model. The results of 

this study could be used to improve future exposure analyses, data processing, and mitigation 

planning by wildfire managers through an improved understanding of the limitations and 

benefits of the FlamMap wildfire models. 

  

Introduction 

 

The Federal Register defines the Wildland 

Urban Interface (WUI) as the area where 

structures and other developments meet or 

intermingle with undeveloped wildland 

(United States Department of Agriculture 

and United States Department of Interior, 

2001). The WUI is where wildland fires 

destroy the most structures when fuels and 

weather are conducive to fire and where 

human-caused fire ignitions are the most 

common (Radeloff, Hammer, Stewart, 

Fried, Holocomb, and McKeefry, 2005). 

Ingalsbee (2010) states there are over 44 

million homes in the United States in fire-

prone WUI areas and the Forest Service 

predicts a 40% increase of new homes in 

the WUI by 2030. Research has estimated 

annual fire suppression costs to be 2 to 4 

billion dollars (Ingalsbee, 2010). This 

illustrates the importance of understanding 

structures at risk of wildfire for city and 

county planning to reduce structure loss 

and overall costs. 

 Land and resource managers assess 

wildfire impacts on ecological, social, and 

economic systems (Scott, Thompson, and 

Calkin, 2013). These systems are known 

as highly valued resources and assets 

(HVRAs). A home or structure is an 

example of a HVRA and will be the focus 

of this analysis. Quantifying wildfire risk 

on HVRAs assists managers with 

strategic, operational, and tactical decision 

making for wildfire mitigation (Scott et 

al., 2013).  

 Wildfire risk to HVRAs, also 

called exposure analysis, is modeled in 

GIS by measuring wildfire likelihood and 
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intensity (Scott et al., 2013). Wildfire 

likelihood quantifies the probability of 

wildfire occurrences on HVRAs. Wildfire 

likelihood depends on a geospatial context 

across a broad area, whereas wildfire 

intensity is measured as a discrete point on 

the landscape or pixel (Scott et al., 2013). 

Wildfire likelihood and intensity are 

driven by complex interactions between 

ignitions, fuel, topography, and weather 

(Scott et al., 2013).  

 Exposure analysis is a critical first 

step in developing risk mitigation 

strategies. Nicole Vaillant, a fire ecologist 

at the Wildland Fire Lesson Learned 

Center (2013), explained it is critical for 

wildfire managers to understand 

limitations within these models when 

making mitigation decisions due to the 

complex variables influencing wildfire. 

Therefore, the Charlotte Fire exposure 

analysis within this study was used to 

analyze the effectiveness and limitations 

of the exposure analysis based upon 

homes with and without loss as a result of 

the Charlotte Fire. These results and 

limitations in turn can help guide effective 

decision making for future wildfire model 

building and wildfire mitigation projects to 

reduce HVRAs loss and overall costs.  

  The exposure analysis was 

performed on 120 homes within the 

Charlotte Fire boundary. The wildfire 

occurred on June 28, 2012, in Pocatello, 

Idaho USA and burned 4.2 sq. km or 

1029.4 acres. There were 61 homes lost 

and 59 homes that survived the wildfire 

(Figure 1). There was no identified cause 

of the fire, but it was thought to be 

manmade. 

 

Data 

 

Home and Fire Data 

 

The Charlotte Fire burn perimeter 

shapefile, created by the Bureau of Land 

Management, was obtained from the Idaho 

State University GIS Department. The 

locations of homes within the burn 

perimeter were identified by compiling 

addresses from the Bannock County 

Online Parcel Viewer. The addresses were 

geocoded in ArcMap, which placed the 

home point in close proximity to its actual 

location. The points were then photo-

interpreted directly over the home using 

pre-fire 2011 National Agriculture 

Imagery Program (NAIP) one meter 

imagery.  

    

 
Figure 1. Charlotte Fire location and home details.  

 To assess whether a home was 

with or without loss, Bannock County 

Assessor data for monetary loss per 

address was verified. Sixty-one homes 

were documented as a total loss. News 

reports recorded 66 home losses. The 

additional 5 structures recorded by the 

news could not be verified and were not 

included in this study. A structure in this 

project is considered a home residence and 

does not include the loss of outbuildings. 
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LANDFIRE Data 

 

The data required for the exposure 

analysis were retrieved from 

LANDFIRE.gov. LANDFIRE data 

describe surface fuel, canopy fuel, and 

topography. The data needed to be at a 

larger scale than the study area to include 

wildfire risk from the surrounding 

environment. This allowed fires to burn 

into and out of the study area. A two mile 

buffer of the Charlotte Fire perimeter was 

selected for the data extent as 

recommended by the ArcFuels tutorial 

(Western Wildland Environmental Threat 

Assessment Center, 2014). Eight 

LANDFIRE raster datasets obtained were 

elevation, slope, aspect, canopy cover, 

canopy height, canopy bulk density, 

canopy base height, and surface fuel. Data 

resolution was 30 meters. Raster data were 

projected from NAD 1993 Albers to NAD 

1983 UTM Zone 12N to be consistent with 

the home and burn perimeter data. 

 

Methods 

 

Tools and software required to perform the 

exposure analysis included ArcFuels to 

prepare the data for processing, FlamMap, 

to create the exposure analysis, and lastly 

statistical analyses through the use of 

ArcMap, SPSS, and Excel (Figure 2).  

 

ArcFuels and Data Preparation  

 

ArcFuels is a toolbar used within ArcMap 

that assists with data preparation before 

wildfire modeling in FlamMap. It 

additionally converts data into workable 

formats after FlamMap wildfire modeling. 

First, the ArcFuels toolbar was used to 

build the Landscape file (LCP) using the 

eight LANDFIRE raster datasets. LCPs 

are binary files containing a compilation 

of ASCII data, derived from the elevation, 

slope, aspect, canopy cover, canopy 

height, canopy base height, canopy bulk 

density, and surface fuel raster data.  

 

 
Figure 2. Project methods. 

FlamMap Wildfire Modeling 
 

FlamMap is open source software used to 

model wildfire. It is a conditional wildfire 

modeling software which means that the 

environmental conditions can be input to 

simulate wildfire. These conditions consist 

of weather, fuel moisture, and fire 

iterations. Weather data for the time and 

date of the Charlotte Fire, including wind 

direction and speed, fuel moisture content, 

and the quantity of fire iterations were 

input into FlamMap. These variable 

conditions along with the LCP file 

describing topography and vegetation are 

used to predict wildfire likelihood and 

intensity within the project area. Outputs 

created from the FlamMap wildfire model 

were burn probability (BP), which 

measures wildfire likelihood, and 

conditional flame length (CFL), which 

measures wildfire intensity. 

 Weather entered into the model 

was determined by historical weather data. 

Statistics (ArcMap, SPSS, and Excel) 

Zonal Statistics One sided t-test Chi-Square 

ArcFuels (FlamMap Data Processing) 

Convert FlamMap text and ASCII files to raster 

FlamMap (Wildfire Modeling) 

Weather Fuel Moisture Fire Iterations 

ArcFuels (Build Data Stack) 

LANDFIRE data, projection, and  build LCP file 
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On July 28
th

 at 2:30 pm at the time of the 

fire, the wind speed was 10 mph, and the 

wind direction was WNW, at a 292 

Azimuth (Weather Underground, 2014).                                                

 The second variable entered into 

FlamMap was fuel moisture; this included 

both dead and live fuel moisture. For both 

categories a very low fuel moisture file 

was selected. The historical average 

rainfall for Pocatello, Idaho in June is 0.95 

inches (Weather Underground, 2014). In 

June 2012, Pocatello only received 0.17 

inches of rain (Weather Underground, 

2014). Additionally, before the fire there 

were 12 days above the average 

temperature of 81° (Weather 

Underground, 2014). Also, the week 

before the fire the wind was above 

average, with wind gusts 35 to 40 mph 

(Weather Underground, 2014). Therefore, 

the high temperatures, winds, and low 

precipitation depicted a very dry landscape 

with low fuel moisture. 

  Lastly the quantity of random fire 

iterations was selected. FlamMap fire 

iterations are fire points randomly placed 

within the project area. The model predicts 

how the random fire points will burn based 

on the weather, fuel moisture, topography, 

canopy, and surface fuel data. These 

wildfire simulations create the BP and 

CFL outputs.  

 According to Nicole Vaillant 

(2014), when determining the amount of 

fire iterations, the goal is to give each 

raster cell an equal chance of burning. 

This can be analyzed by running many fire 

models until the mean change becomes 

close as the quantity of fires increases. 

Therefore 5 models were run with an 

increase of 500 fires for each model. The 

fire iterations ranged from 500 to 2500 

fires. The lowest mean change occurred 

between 1500 and 2000 fires with a mean 

change of 0.00027 burn probability (Table 

1). Therefore, the model with 2000 

iterated fires was selected for the exposure 

analyses.  
 

Table 1. Fire iteration mean change comparison.

 

ArcFuels and FlamMap Data Processing 

 

The weather, fuel moisture, fire iterations, 

and LCP file were processed using the 

FlamMap wildfire model. This model 

produced both CFL and BP outputs which 

were needed for structure exposure 

analysis. CFL and BP were built as text 

and ASCII files within FlamMap. The 

ArcFuels tool was utilized to convert the 

CFL and BP ASCII data into shapefiles, 

and then into raster format for further 

statistical analyses in ArcMap.  

 

Statistical Methods  

 

Statistical means of CFL and BP were 

tested between homes with and without 

loss using ArcMap Zonal Statistics as a 

Table tool. Statistical analyses were also 

performed on each topography, canopy, 

and surface fuel dataset used to produce 

CFL and BP outputs. These tests showed 

whether there were significant mean 

differences in the datasets between homes 

with and without loss. The one-tailed t-test 

was used to test the mean differences for 

CFL, BP, slope, and canopy datasets. The 

Chi-Square statistic was used to test for 

significant mean differences in the aspect 

and surface fuel datasets (Figure 2).  

   

Data Improvements for Calculating CFL 

and BP means 

 

Urban class within the surface fuel dataset 

created issues when calculating the CFL 

Fire Iterations Mean Change Min Max

500 to 1000 0.00051 -0.041 0.042

1000 to1500 0.0037 -0.023 0.027

1500 to 2000 0.00027 -0.034 0.028

2000 to 2500 -0.004 -0.051 0.022
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and BP mean values. Urban class is non-

burnable and sets the value of CFL and BP 

to zero. The urban class resulted in 

burnable values of zero for 20 of the 120 

homes if the home point shapefile was 

used to gather BP and CFL values. 

Therefore a 45.7 meter buffer was used to 

gather mean BP and CFL values around 

each home and not the home point 

shapefile. The 45.7 meter buffer is 

currently used by the United States Forest 

Service to determine a structure’s 

exposure to wildfire (Vaillant, 2014). 

According to Scott et al. (2013), including 

a buffer around HVRAs more accurately 

estimates the structures exposure to 

wildfire. The buffer increases the sample 

size for estimating wildfire risk from the 

structure’s surrounding environment and 

does not bias the overall wildfire risk 

(Scott et al., 2013). 

Researchers additionally discussed 

the negative impact of the urban class, 

especially when it defines linear elements 

such as roads and riparian environments. 

These urban elements are misrepresented 

because of the scale of the raster data 

(Scott et al., 2013). The roads in the 

Charlotte Fire study area measured 8-10 

meters wide from the NAIP imagery. 

Therefore the 30 meter LANDFIRE pixel 

data amplified the impact of non-burnable 

roads. Due to the close vicinity between 

roads and homes, this decreased the CFL 

and BP means due to the zero burnable 

values of the urban class. According to fire 

ecologist Nicole Vaillant (2014), current 

Forest Service wildfire models use FSVeg 

raster land data where each cell has a 

probability of burning. The Charlotte Fire 

study area was composed of private and 

not federal land, so the FSVeg data with 

burnable values could not be used. 

Roads were the primary 

component of the urban class in the 

Charlotte Fire study area. The urban class 

from the surface fuel data was masked out 

before calculating BP and CFL mean data. 

This decreased the impact from the zero 

values in the non-burnable urban class.  

  

Statistics Model to Collect Mean Data 

 

Lastly, ArcGIS ModelBuilder was used to 

produce the mean data gathered from the 

45.7 meter home buffer. An Iterate Feature 

Selection tool was used within the model 

so that each home buffer was passed 

individually through the Zonal Statistics 

Table tool. Without the iterator, 

overlapping polygons would miscalculate 

the area due to intersecting buffers. The 

iterate tool created an individual table for 

each home’s mean data. Individual tables 

produced were then merged into one table 

to analyze the mean values. 

  

Exposure Analysis 

 

An exposure analysis which measures a 

structure’s risk to wildfire is determined 

by combining CFL and BP. In the 

following sections, CFL and BP are 

defined, and the statistical results of the 

one-tailed t-test and scatter plot are 

discussed. 

 

Burn Probability 

 

Burn probability (BP) is the probability of 

a pixel burning given one random ignition 

on the landscape. The following equation 

was used to calculate BP with FlamMap: 

 

BP = # of times a pixel burns / # of fires 

iterated 

 

 Therefore with 2000 fires iterated, 

if the burn probability equals 0.01, then 

the pixel on the landscape was projected to 

burn 20 times out of 2000 fires ran in the 

model. The wildfire model showed a 
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greater BP in the middle to south range of 

the Charlotte Fire and it lessened towards 

the north fire boundary (Figure 3).  The 

north boundary of the Charlotte Fire ran 

along the Bannock Highway. Across the 

highway was classified as an urban 

environment because there is a golf course 

and dense residential area. This resulted in 

a low BP. The narrow low burn 

probabilities that string throughout the 

Charlotte Fire and appear dark green are a 

result of the roads that are classified as a 

part of the urban layer within the surface 

fuel data (Figure 3). These are the areas 

that were masked out of the mean data to 

calculate the exposure analysis statistics. 

 

 
Figure 3. Burn probability detail of burn area. 

 Overall there were more homes 

lost as BP increased (Table 2). A one-

tailed t-test was performed to test if the 

mean values for BP were significantly 

greater for homes with loss than homes 

without loss. BP was significant (p = 

0.013).  

 The homes were clustered in two 

areas of the Charlotte Fire (Figure 4). 

There were 37% more homes lost in the 

southern boundary of the fire and 82% 

fewer homes were lost in the northern 

boundary (Table 3). 

 
Table 2. BP value percent difference between 

homes with and without loss.

 

 
Figure 4. Home north and south clusters. 

Table 3. Home quantities and percent difference 

between homes with and without loss, grouped into 

clustered areas.

 

 

 

BP Value Loss No Loss Difference

0 - .025 13 12 8%

.026 - .050 15 19 24%

.050 - .075 28 24 15%

.076 - 1 5 4 22%

North Cluster South Cluster

Loss 10 51

No Loss 24 35

Difference 82% 37%
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Conditional Flame Length 

 

The Conditional Flame Length (CFL) is a 

measure of conditional wildfire intensity.  

Fire Intensity Levels (FILs) are used to 

create the CFL. FIL is a measure of fire 

behavior and base flame length at a point 

on the landscape. There are 6 intensity 

levels which increase in 2 foot increments 

for each level (Table 4). A Flame Length 

Probability (FLP) gridded text file 

contains information about the burn 

probability and FILs for each x and y 

coordinate. The ArcFuels tool bar was 

used to convert the FlamMap FLP text file 

into a point shapefile, and then into raster 

format. For further analysis of CFL means, 

the ArcMap Zonal Statistics Table tool 

was utilized. The following equation was 

used to calculate CFL within FlamMap: 
 

CFL = ∑ (BPi/BP) (Fi) 

 

Where:  

BPi is the probability of a fire at the 

i
th

 flame length category, BP is the burn 

probability, and Fi is the flame length 

midpoint of the i
th

 FIL category. 

 
Table 4. Fire intensity level descriptions.

 

 Results of the CFL mean data 

showed similar quantities of homes with 

and without loss in each of the CFL ranges 

(Table 5). Highest CFL ranges were 

located within the center of the Charlotte 

Fire boundary (Figure 5). A one-tailed t-

test was performed to test if the mean CFL 

values were significantly greater for 

homes with loss than homes without loss. 

CLF was not statistically significant (p = 

0.087). T-test results illustrate the BP 

mean difference was greater for homes 

with loss than homes without loss, 

whereas the CFL mean difference was not 

significantly greater for homes with loss. 

 
Table 5. CFL differences between homes with and 

without loss.

 

 
Figure 5. Conditional flame length of the Charlotte 

Fire area. 

Exposure Analysis Scatter Plot 

 

Scott et al. (2013) expressed an exposure 

analysis is an assessment of wildfire 

hazard-likelihood (BP) and intensity 

(CFL) where HVRAs are located. 

Combining these fire modeling outputs 

Fire Intensity 

Level

Flame Length 

Range (in feet)

1 0 - 2

2 2 - 4 

3 4 - 6

4 6 - 8

5 8 - 12

6 12 +

CFL Value Loss No Loss Difference

0 - 2 14 10 33%

2.1 - 4 22 24 9%

4.1 - 6 21 24 13%

6.1 - 8 4 1 120%



 8 

with HVRA locations is a critical step in 

developing wildfire risk mitigation 

strategies (Scott et al., 2013). Scatter plots 

are a way to visualize an exposure analysis 

for individual HVRAs (WWETAC, 2014). 

Therefore, a scatter plot was used to 

visualize exposure risk to structures, using 

CFL along the y-axis and BP along the x-

axis (Figure 6). The scatter plot illustrates 

the CFL and BP means are similar in 

range, but greater for homes with loss.  

 

 
Figure 6. Scatter plot showing the results of each 

home’s exposure to wildfire by its mean 

conditional flame length and burn probability.  

Individual Datasets Analyzed 

 

The exposure analysis was formed from 8 

raster datasets including information on 

topography, surface, and canopy fuels. 

The 45.7 m home buffer was also used to 

calculate the mean statistics of each input 

dataset. A one-tailed t-test was used to test 

for significant differences in the slope and 

canopy characteristics. The Chi-Square 

test was used to analyze the categorical 

data within the aspect and surface fuel 

datasets. 

 

Topography Data Analyses 

 

Topography influences the likelihood and 

spread of wildfire. Slope means were 

gathered for each of the 120 homes 

affected by the Charlotte Fire. These were 

then tested for statistical significance 

between homes with and without loss. 

 

Slope 

 

Percent of slope influences fire behavior. 

The National Wildland Fire Behavior 

Group (NWFBG, 2008) state fires burn 

more rapidly uphill than downhill. This is 

because fuels above the fire are brought 

into closer contact with upward moving 

flames (NWFBG, 2008). Steep slopes also 

present the problem of burning material 

rolling down-hill and igniting fuel below 

the main fire (NWFBG, 2008). Fires on 

flatter slopes are more influenced by fuels 

and wind (NWFBG, 2008).                         

 Results from the one-tailed t-test 

showed that slope was statistically greater 

for homes with loss than without loss (p = 

0.028). The slope mean of homes with loss 

was 10.5%, while homes without loss had 

a mean of 9.6%. Overall, there were more 

homes with loss as slope increased (Figure 

7).  

 

 
Figure 7. Quantity of homes and slope. Illustrating 

there were more homes with loss with increased 

slope. 

Aspect Analysis 

 

Slope aspect affects slope exposure to the 

sun. South and southwest slopes are more 

exposed to sunlight and generally have 

lighter and sparser fuels, higher 

temperatures, lower humidity, and lower 

0 5 10 15 20 25 30
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5-10%

10-15%

15-20%

Quantity of Homes 

S
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fuel moisture (NWFBG, 2008).  

Therefore, according to the NWFBG 

(2008), in wildfire analysis southern 

slopes are considered to be of higher risk 

to wildfire than northern slopes and are 

most critical in terms of start and spread of 

wildland fires (NWFBG, 2008). North 

facing slopes have more shade which 

causes heavier fuels, lower temperatures, 

higher humidity, and higher fuel moistures 

(NWFBG, 2008). As a result, the NWFBG 

(2008) expresses north facing aspects will 

have less fire activity than a south facing 

slope.                                                       

 The LANDFIRE aspect raster is 

divided into 8 different aspect ranges 

(Figure 8). Each range indicates which 

direction a raster cell’s slope faces. To 

assess whether aspect may impact home 

loss, a Chi-Square test was performed. For 

a Chi-Square test there needed to be more 

than 5 expected homes in each category. 

There were fewer than 5 homes in 4 of the 

8 aspect ranges. Therefore the homes were 

grouped into only northern or southern 

aspects. Northern aspects were ranges 

greater than 270° or less than 90°. 

Southern aspects were between 90° and 

270°. In northern aspects there were 24 

homes without loss and 13 with loss. In 

southern aspects there were 35 homes 

without loss and 48 with loss (Figure 9). 

The test only compared two classes, as a 

result the Yates correction for continuity 

was applied. The calculated critical value 

of the Chi-Square test was 4.406, which is 

greater than the 3.841 critical value at a 

5% significance level for 1 degree of 

freedom. Therefore, test results illustrated 

that northern and southern aspects were 

not significantly different between homes 

with and without loss.  

 

Fuel Data Analyses 

 

The LANDFIRE fuel data describes the 

composition and characteristics of canopy 

and surface fuel (Wildland Fire Science, 

2010). Each canopy characteristic was 

statistically analyzed using the one-tailed 

t- test assuming there was greater fire risk 

with an increase in canopy fuel. The four 

canopy datasets included canopy cover, 

canopy height, canopy base height, and 

canopy bulk density. Canopy data were 

present for areas with existing vegetation 

types that are forest and woodland 

(Wildland Fire Science, 2010).  

 

 
Figure 8. Hot to cool aspects are represented by a 

color gradient from red to blue. 

 
Figure 9. Illustrates a greater quantity of homes 

with loss that resided in southern aspects. 

 The Chi-Square test was used to 

analyze the categorical surface fuel data. 

Any areas without canopy characteristics 

are considered surface fuel areas which are 

covered as burnable biomass within the 

fuel model data (Wildland Fire Science, 

2010). The Wildland Fire Science (2010) 

expressed for areas with young or short 

0 10 20 30 40 50

Southern Aspect

Northern Aspect

Loss No Loss
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conifers the burnable biomass is 

represented as shrub type within the 

surface fuel model. 

 

Canopy Fuel Analyses 
 

In fire behavior fuel models, canopy 

characteristics are used to compute 

shading, wind reduction factors, spotting 

distances, crown fuel volume, spread 

characteristics of crown fires and 

incorporate the effects of ladder fuels for 

transitions from a surface to crown fire 

(Wildland Fire Science, 2010). 

 When the canopy raster dataset 

was compared to 1 meter NAIP imagery, 

the canopy coverage appeared to be 

largely underrepresented (Figure 10). 

Vegetated areas that were not covered by 

canopy raster data were represented within 

the surface fuel dataset to predict wildfire. 

 

 

 
Figure 10. Dense juniper canopy as seen in the 

NAIP imagery is underrepresented in the 

LANDFIRE canopy data. 

Canopy Cover 

 

Canopy cover (CC) describes percent 

cover of tree canopy in a stand (Wildland 

Fire Science, 2010). The values of canopy 

cover are class midpoints of a range, as 

shown below:  

 

      0 = Non-forested vegetation  

    15 = Forest cover 10% <= and < 20%  

    25 = Forest cover 20% <= and < 30%  

    35 = Forest cover 30% <= and < 40%  

    45 = Forest cover 40% <= and < 50%  

    55 = Forest cover 50% <= and < 60%  

    65 = Forest cover 60% <= and < 70%  

    75 = Forest cover 70% <= and < 80%  

    85 = Forest cover 80% <= and < 90%  

    95 = Forest cover 90% <= and <= 100% 

 

 The one-tailed t-test results 

indicated that canopy cover was greater 

between homes with loss versus homes 

without loss (p = 0.033). The mean 

difference was 2.06. Homes with loss had 

a CC mean of 7.7%, and homes without 

loss had a CC mean of 5.64%. 

 

Canopy Height  

 

Canopy height (CH) describes the average 

height of the top of the canopy for a stand 

(Wildland Fire Science, 2010). The units 

are in meters. Actual CH values were 

multiplied by 10 for fire modeling 

purposes. CH classes are represented as 

midpoints of a range:  

 

  0 = Non-forested vegetation (0) 

          2.5 = 0 < CH < 5 meters (25) 

          7.5 = 5 <= CH < 10 meters (75) 

        17.5 = 10 <= CH < 25 meters (175) 

        37.5 = 25 <= CH < 50 meters (375) 

        50.0 = CH >= 50 meters (500) 

 

 One-tailed t-test results indicated 

canopy height was statistically greater for 

homes with loss versus homes without loss 

(p = 0.013). Final mean results were 

represented in actual and not weighted CH 

values. The mean difference was 1.86 m. 

Homes with loss had a mean CH of 4.87 

m, and homes without loss had a mean CH 

of 3.01 m. 
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Canopy Bulk Density 

 

Canopy bulk density (CBD) is defined as 

the mass of available canopy fuel per unit 

canopy volume that would burn in a crown 

fire (Wildland Fire Science, 2010). CBD 

data values: 

 

           0 - 0.44 kg m-3 (0 - 44) 

           0.45 = all values > 0.45 kg m-3 (45) 

 

 Not all species were used for 

computing plot-level CBD (Wildland Fire 

Science, 2010). For example, all Acer and 

Populus spp. were excluded from the 

canopy fuel profile as these and other 

broadleaved species are considered 

relatively inflammable and therefore 

unavailable (Wildland Fire Science, 2010). 

Some stands dominated by broadleaf 

species, which typically do not permit 

initiation of crown fire (e.g. Populus spp.), 

are coded with a CBD of 0.01 kg m-3 

(Wildland Fire Science, 2010). Only 1.3% 

of the Charlotte Fire area was estimated to 

be broadleaf species. Since crown fire is 

rarely observed in most hardwood stands, 

the lowest CBD value possible was used to 

prevent false simulation of crown fire in 

these areas (Wildland Fire Science, 2010).  

 One-tailed t-test results indicated 

CBD was not statistically greater for 

homes with loss versus homes without loss 

(p = 0.299). Final mean results were 

represented as actual and not weighted 

CBD values. The mean difference was 

0.0028 kg m-3. Homes with loss had a 

CBD mean of 0.033 kg m-3, while homes 

without loss had a CBD mean of 0.030 kg 

m-3.  

 

Canopy Base Height  

 

Canopy base height (CBH) describes the 

lowest point in a stand where there is 

sufficient available fuel (=> 0.25 in dia.) 

to propagate fire vertically through the 

canopy (Wildland Fire Science, 2010). 

Specifically, CBH is defined as the lowest 

point at which the canopy bulk density is 

>= 0.012 kg m-3 (Wildland Fire Science, 

2010). CBH supplies information used in 

fire behavior models to determine the 

point at which a surface fire will transition 

to a crown fire (Wildland Fire Science, 

2010). CBH data values: 

  

         0 – 9.9 meters (0 - 99)  

         >= 10 meters or broadleaf trees (100) 

 

 The one-tailed t-test results 

indicated that CBH was not statistically 

greater for homes with loss versus homes 

without loss (p = 0.472). The mean 

difference was 0.01 m. Homes with loss 

had a CBH mean of 0.62 m, and homes 

without loss had a CBH mean of 0.61 m. 

 

Surface Fuel Analysis 

 

The surface fuel data represents distinct 

distributions of fuel loadings found among 

surface fuel components (live and dead), 

size classes, and fuel types (Wildland Fire 

Science, 2010). The fuel models are 

described by the most common fire 

carrying fuel type (grass, brush, timber 

litter, or slash), loading and surface area-

to-volume ratio by size class and 

component, fuel bed depth, and moisture 

of extinction (Wildland Fire Science, 

2010).               

Total area of each surface fuel 

category was analyzed between homes 

with and without loss. Sixty-nine percent 

of the Charlotte Fire boundary was 

classified as FBFM2. Wildland Fire 

Science (2010) describes FBFM2 as 

“burns fine, herbaceous fuels, stand is 

curing or dead, may produce fire brands 

on oak or pine stands.” The FBFM2 class 

also had the most coverage within the 
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45.7m home buffer (Figure 11). The 

remaining 31% of the project area 

contained fuel classes FBFM1, FBFM5, 

FBFM8, FBFM9, Urban, and Agriculture. 

 

 
Figure 11. Surface fuel coverage within 45.7 m of 

homes with and without loss. 

Homes with loss had 81% greater 

coverage for the surface fuel class FBFM5 

and 51% greater coverage for FBFM8 

(Table 6). FBFM5 represents low intensity 

fires, young, green shrubs with little dead 

material; fuels consist of litter from the 

understory. FBFM8 represents slow, 

ground burning fires, closed canopy stands 

with short needle conifers or hardwoods, 

litter consist mainly of needles and leaves, 

with little undergrowth, occasional flares 

with concentrated fuels.  

 Homes without loss had 87% more 

coverage in Agriculture and 80% more in 

FBFM1 (Table 6). FBFM1 represents 

surface fires that burn fine herbaceous 

fuels, cured and curing fuels, little shrub or 

timber present, primarily grasslands and 

savanna.  

 A Chi-Square test was performed 

in Microsoft Excel. Each surface fuel class 

intersecting a structure’s 45.7 m buffer 

was summed using a pivot table in Excel. 

The Chi-Square function in Excel 

compared and computed the actual surface 

fuel model class counts per homes with 

and without loss to the calculated expected 

values of those counts. The test revealed 

there was not a significant difference 

between the fuel model categories of 

homes with or without loss (p = 0.10); 

however, the p value was close to 0.05, 

illustrating that the differences in surface 

fuel classes were close to being 

statistically significant. This was due to 

the high differences amongst agriculture, 

FBFM1, FBFM5, and FBFM8 fuel 

classes. However, there were not strong 

differences in FBFM2, FBFM9, and urban 

fuel classes (Table 6). 

 
Table 6. Surface fuel coverage differences for 

homes with and without loss. 

 
 

Conclusion/Discussion 

 

In summary, the one-tailed t-test 

illustrated that within the wildfire model, 

burn probability, slope, canopy cover, and 

canopy height were found to have greater 

means for homes with loss than without 

loss. These results supported the 

hypothesis that these wildfire 

characteristics did increase wildfire risk 

within the model as expected.  

The one-tailed t-test illustrated  

conditional flame length, canopy bulk 

density, and canopy bulk height did not 

have statistically greater means for homes 

with loss than without loss. However, the 

canopy raster dataset underrepresented the 

actual juniper canopy present in the 

project area. As a result, the canopy fuel 

means were low for structures within the 

project area. Canopy fuel loading allows 

Fuel Model 

Class

Homes with Loss 

Area (Sq m)

Homes without 

Loss Area (Sq m)
Difference

Agriculture 5,209.8 13,150.8 86 %

FBFM1 14,480.8 33,853.9 80 %

FBFM2 178,011.2 197,033.0 10 %

FBFM5 46,063.0 19,502.0 81 %

FBFM8 28,765.6 17,101.9 51 %

FBFM9 11,255.5 10,261.3 9 %

Urban 115,409.2 95,192.8 19 %
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crown fires to spread faster according to 

Vaillant (2014), so it was assumed these 

variables would also increase wildfire risk 

to structures. The Chi-Square tests for 

surface fuel and aspect datasets revealed 

there were no significant differences 

within these classes between homes with 

and without loss. However, test results 

were close to being statistically 

significant. This could be seen in larger 

differences between four of the seven 

surface fuel classes and 31% more homes 

lost within southern aspects. 

 The model revealed issues in 

calculating wildfire risk to structures due 

to the urban layer and its zero burn 

probability. The amplified effect of the 

urban layer and linear elements such as 

roads was changed by buffering the home 

point file and masking the urban class 

when calculating the mean values of BP 

and CFL. The urban class strongly 

affected areas around roads and the north 

area of the fire boundary. There were 10 

homes with loss in the north cluster of the 

Charlotte Fire, yet this area had low BP 

and CFL.  

 There are many variables 

influencing a structure’s risk of wildfire as 

seen in the FlamMap model.  

Understanding limitations and complexity 

of wildfire modeling is important for GIS 

researchers and land and resource 

managers for constructive land 

management and city planning efforts to 

decrease the loss of structures at risk of 

wildfire. Exposure analysis models are 

often used to propose areas for defensible 

space programs or to make new 

development decisions. Defensible space 

is used to minimize a structure’s risk to 

wildfire through creating distance between 

flammable fuels and the structure. This is 

achieved through vegetation removal, 

thinning, the use of non-flammable 

construction materials, and the location of 

stacked fire wood and propane. 

 As seen in the Charlotte Fire 

exposure analysis, areas close to urban 

environments are still at risk of wildfire 

and should be included within wildfire 

mitigation programs even though the 

model predicted low BP and CFL. In 

addition to understanding model 

limitations, future improvements in the 

scale of the data should lead to more 

accurate wildfire models and as a result, 

improve strategic and tactical planning to 

reduce structure loss and overall costs. 
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