

Wieckowicz, Alison. 2010. Overcoming the Object-Relational Impedance Mismatch in GIS Development: a

Comparison of Data Abstraction and Serialization Methods used in Web Mapping Application Development.

Volume 12. Papers in Resource Analysis. 14 pages. Saint Mary’s University of Minnesota University Central

Service Press. Winona, MN. Retrieved (date) http://www.gis.smumn.edu

Overcoming Object-Relational Impedance Mismatch in GIS Development: a Comparison

of Data Abstraction and Serialization Methods used in Web Mapping Application

Development

Alison Wieckowicz

Department of Resource Analysis, Saint Mary’s University of Minnesota, Minneapolis, MN

55404

Keywords: Geodatabase, Object-Relational Impedance Mismatch, Object-Relational Mapping,

Entity Modeling, N-Tier Architecture

Abstract

This paper presents two data access strategies that employ different data abstraction and

serialization methods applied to a working geodatabase to facilitate development of a web

mapping application. The goal of the study was to compare methods used to minimize the effects

of object-relational impedance mismatch, a well-known set of issues that result from the

integration of relational data and object-oriented programming languages. This study focused

specifically on increasing support for schema evolution; a common object-relational impedance

issue within GIS systems. The study was conducted using a real-life, transactional geodatabase

used to maintain water quality data. The database and test applications were designed to meet

real-life functional requirements. The first method employed the use of entity modeling

techniques in the application mid-tier to map relational geospatial data from the relational

database management system to an object-oriented model in order to facilitate data access,

serialization and transport via a web service; the second procedure maintained application logic

within the object-relational geodatabase system tables and employed a generic abstraction

method for serialization within a web service. The resulting n-tier applications were tested by

applying a unit test strategy based on real-life use case scenarios and the results were compared

to assess the extensibility, maintainability and richness of the result. The application that

leveraged the object-relational model of the geodatabase system was found to provide better

support for schema changes to the geodatabase resulting in less maintenance, while the

application constructed using entity modeling of relational data resulted in richer UI features but

was not able to support schema changes to the geodatabase.

Introduction

Relational databases are a widespread

storage format for geospatial data.

Commonly used development frameworks

for web mapping solutions are designed for

object-oriented development. A well-known

set of problems, commonly referred to as

object-relational impedance mismatch,

occur when applications are developed using

object-oriented concepts to access data

persisted in relational databases. Due to the

increasingly widespread implementation of

service-oriented (SOA), multi-tier (also

2

known as n-tier) architecture there is an

increased need to improve the

interoperability, and extensibility of data

access services. This need is also present

within GIS application development where

data services are often used to provide

access to relational schema that undergo

periodic database refactoring as geodatabase

schema evolve over time.

 According to Ambler (1998), object-

relational impedance mismatch is defined as

follows: “The difference resulting from the

fact that relational theory is based on

relationships between tuples (records) that

are queried, whereas the object paradigm is

based on relationships between objects that

are traversed”. Interoperability of these

systems is often achieved through the

implementation of object-relational mapping

(ORM). ORM is the process of mapping

objects to relational data in order to

overcome the impedance mismatch. N-tier

applications are applications where

presentation, service, business logic and data

tiers are logically and sometimes physically

separate. In n-tier applications the ORM

process occurs within the mid-tier, between

the data and service tiers. This often results

in common language runtime (CLR) objects.

Relational data are abstracted into objects

that integrate easily with popular object-

oriented languages. The purpose of entity

modeling within this process is to project

data from a logical relational model to an

object-oriented language. This results in

compiled, object-relational mappings that

can be queried and manipulated using

object-oriented languages, often from

multiple application tiers.

 Entity modeling is a form of ORM

that raises the level of abstraction within the

mid-tier. In an entity data model (EDM),

entities and associations can be used to

represent conceptual, as opposed to

relational, models as they are abstracted into

objects. Entities represent top-level objects,

for example a row or a tuple, with identities,

while associations are used to relate two or

more entities (Adya, A., et al., 2007). In n-

tier development the objects that result from

EDM provide better multi-tier access since

these objects can be serialized using an

interchange format such as XML or JSON

for web service invocation and desterilized

within the presentation (client) tier as

needed. The study described in this paper

uses an Entity Data Model (EDM) as a

means of object-relational mapping.

 Unfortunately, ORM/EDM does not

entirely overcome the impedance mismatch

problem. Although EDM frameworks like

the Microsoft ADO.NET Entity Framework,

were designed to reduce object-relation

impedance mismatch as it relates to code

semantics and inefficiencies (Adya, et al.,

2007), some definitions of object-relational

impedance mismatch identify ORM/EDM as

a cause of impedance mismatch, rather than

a solution (Chen and Huang, 1995);

especially when mappings between objects

and tables are made in a very

straightforward way (Wikipedia, 2010).

This is because when the relational schema

changes, which can be quite common in

transactional GIS systems, the relational

model and the object model become

inconsistent and the mapping between the

two models must be updated to maintain

synchronization. In an application with

ORM CLR objects, synchronization would

require code changes and recompilation of

the ORM assemblies. Although, methods

have been proposed for maintaining the

consistency of these mappings under

database evolution (An, et al., 2008), these

methods are quite complex and difficult to

implement without an existing framework in

place.

 One alternative to ORM is to employ

an Object-Relational Database Management

3

System (ORDBMS). ESRI’s geodatabase is

an ORDBMS. It essentially consists of a

RDBMS core with an object-oriented shell

or layer through which applications access

and manage persistent data. The object-

oriented model within the RDBMS consists

of a series of relational tables, referred to as

the Geodatabase System Tables, which hold

data used to instantiate objects. Metadata for

all objects within a geodatabase, for

example feature classes, tables and

relationships classes, is persisted in the

Geodatabase System Tables. Relational GIS

data is stored within the RDBMS within a

set of business tables. In ORDBMS, object-

oriented programming concepts such as

polymorphism and inheritance result in

advantages for application developers and

tend to minimize object-relational

impedance mismatch (Worboys and

Duckham, 2004).

 One way ORDMSs reduce

impedance mismatch is by increasing

support for schema evolution. A common

feature of object-oriented systems is schema

management including the ability to create

and change class schemes (Worboys and

Duckham, 2004). This feature is part of

ESRI’s Geodatabase System as well. It is

apparent in the ability of GIS practitioners to

administer schema changes using ArcGIS

data management tools. Typical ESRI

Geodatabase client applications like ArcMap

are able to support schema changes to

underlying databases due to the object-

relational model employed by the system.

Consider the example of relationships

between spatial features. These

relationships are defined within the

geodatabase as a relationship class object.

In this way new relationships can be defined

at any time. GIS client applications are built

using ArcObjects to interface with the

objects defined within the GDB System

Tables. As a component of the object-

relational GIS system, they are able to

support schema changes and evolve as the

underlying geodatabase changes without the

need for code maintenance.

 Although ArcObjects are a viable

and supported solution to the issues of

impedance mismatch, third party

Applications Programming Interface (API)

dependence is an issue for several reasons.

The ArcGIS Server Web APIs that have

been developed to work with the ESRI GIS

systems have limited access to fine-grained

ArcObjects within the service, and

presentation tier of n-tier technology such as

Silverlight. It is also documented that

application performance is adversely

affected by frequent calls to fine-grained

ArcObjects (Laframbiose, 2006; Flood,

2002). In addition, Silverlight was

developed to mesh seamlessly with

ADO.NET Entity Framework, a robust

EDM solution, as well as SOA frameworks,

making an ArcObjects-free solution

appealing. For these reasons, there is a

need to investigate alternate solutions that

overcome the object-relational impedance

mismatch without heavy reliance on

proprietary APIs.

 Some strategies for minimizing

impedance mismatch leverage RDBMS

programming languages such a Transact-

SQL (TSQL). As Zdonik and Maier (1990)

point out: “a loss of information occurs at

the interface, if the programming language

is unable to represent database structures,

such as relationships, directly.” This is

essentially what happens when the objects

and the relational model, joined by an ORM,

become out-of-sync due to schema changes

to the relational model. Zdonik and Maier

(1990) imply that impedance mismatch is

proportional to the amount of interface that

occurs between the relational and object-

oriented components of the application,

therefore, maintaining more of the

4

application within one system would lower

impedance mismatch. Although not entirely

computationally complete when compared

to an object-oriented language, stored

procedures and TSQL come very close.

Implementing stored procedures that

navigate the ArcSDE System Tables to

provide access to objects would likely

overcome many of the impedance mismatch

problems that occur within GIS systems and

result in a solution that can support schema

changes.

 In addition to leveraging RDBMS

languages such as TSQL to reduce

impedance mismatch, others have suggested

using loosely-typed object mappings to

increase “data independence” within

systems (Bernstein, et al., 2008). This

differs from typical EDM strategies where

relational schema is mapped to strongly-

typed CLR objects. This concept could be

implemented within the mid-tier of the

application as a way of exposing data to

client applications via web services without

creating hard-coded objects that are

dependent on explicit data structures. The

result would be more capable of supporting

schema changes.

Data

Water Quality Database

Several years’ worth of water quality data

has been collected by specialists within the

city of Eagan, Minnesota and has resulted in

a robust geodatabase that is primarily

maintained and developed by water quality

staff with knowledge of ArcGIS and

Geodatabase schema management

techniques. The database consists mainly of

water body feature classes; lakes, wetlands,

and storm basins, and related water quality

data stored within stand alone tables.

Relationship classes are defined to relate the

water body features to the standalone tables,

typically in a one-to-many specificity.

Attribute domains are used where ever

possible to maintain the integrity of the

tabular data.

 The Water Quality geodatabase runs

on ArcSDE 9.3.1 and Microsoft SQL Server

2008. A geodatabase data model diagram of

the water quality database is displayed in

Appendix 3.

Methods

Application Development Objectives

There were two primary objectives

considered when developing the study

applications. As stated earlier, the first

objective was to maintain the level of

schema management afforded by ArcGIS,

while minimizing or eliminating the need for

code or relational mapping maintenance and

application recompiles. The second was to

improve the end user experience for users

who have limited GIS knowledge and who

would primarily be viewing data related in a

one-to-many cardinality to water body

features in the Geodatabase. In addition,

typical web mapping application

development objectives were upheld.

Limitations

Since the intent of the case study application

was to provide an interface for internal

employees to access the water quality

database and not individuals from the

general public, security was not a

consideration during the development of the

services or application.

 Additionally, the geodatabase

versioning workflow used by staff to

maintain the water quality data was

simplistic and implemented the option to

move edits to base tables. For this reason,

5

there was no need to consider more complex

versioning scenarios within this study.

Development Methods

Both study applications used in this

comparison were developed using C# and

Microsoft .NET 4.0 within the Microsoft

Visual Studio 2010 Environment. The .NET

framework was selected as the platform for

development for several reasons. Mainly,

the .NET framework includes well

documented and easily integrated

frameworks for developing each tier of the

study application including EDM, web data

service development (Klein, 2010), as well

as client interface development and

automated unit testing (Ghoda, 2010).

 The presentation layer, a portion of

client-tier, for both study applications was

developed using consistent methods. Both

client-tier applications were developed using

Microsoft Silverlight version 4.0. The

client-tier consists of a map-centric user

interface (UI) constructed using the ArcGIS

Server API for Microsoft Silverlight 2.0. A

simple ArcGIS Server web mapping service

was used to publish the water body features

(lakes, storm basins and wetlands) as a

single service. The service was consumed

within the ArcGIS Server Silverlight map

control. Both applications included

traditional GIS “identify” functionality.

The interface also contained a Silverlight tab

control designed to display a series of data

grids that hold records related to the water

body features. The data grids were

populated with related records based on the

results of an identify event.

Application 1

Application 1 employed a data access

strategy that was developed using an entity

model in the mid-tier to map data from the

business tables of the waters geodatabase to

data objects used within the application.

Figure 1 depicts Application 1 as an n-tier

application with an Entity model represented

within the mid tier and client tiers.

 The EDM of the water quality

geodatabase was designed using Microsoft

ADO.NET Entity Framework data modeling

tools. The water quality database feature

classes, tables and relationship classes were

redefined within the entity model context.

Figure 1. Application 1 n-tier diagram.

6

Associations between feature class business

tables and standalone tables were defined

based on the characteristics of existing

relationship classes within the geodatabase.

The cardinality of each relationship was

defined within the multiplicity property of

the association. Appendix 1 illustrates the

structure of the lakes entity object.

Wetlands and storm basin entity types were

created using similar methods.

 This process resulted in a series of

.NET classes that defined strongly-typed

objects known as entity types. Each entity

type mapped a feature class to its associated

tables. Data in the tables was accessed

through properties and methods of the entity

type.

 A type of Windows Communication

Service (WCF) web service, specifically a

Domain Service, was used to expose the

entity model. WCF Data Services expose

data, often represented as EDM entity

objects, via web services accessed over

HTTP. In addition to exposing data over

HTTP, WCF Domain Services manage the

serialization of data objects between the

server-side (mid-tier) and the client-tier.

The Domain Service that was implemented

within Application 1 enabled the query of

EDM types via domain context objects.

Context objects could be considered a

“mirror image” of the EDM objects on the

client. The resulting server-side and client-

side classes enabled the query of data via

strongly-typed CLR object instances of the

entity types from multiple application tiers.

 Application logic was added to the

domain service class so that data operations

could be exposed through the service.

Since the backend geodatabase included

aliased fields, business logic was added to

the client tier to accommodate functionality

within the EDM Domain Data Service

context.

Application 2

Application 2 was designed to demonstrate

the use of TSQL and generic data services to

eliminate object-relational impedance

mismatch within the application. Rather

than creating mapping between the business

tables within the relational geodatabase and

an object-oriented language, in Application

2 objects were accessed by querying the

geodatabase system tables using TSQL.

Since ArcObjects were not readily available

for development within the web tier of the

application, an equivalent set of objects

needed to be developed to provide access to

the data within the object-relational model.

This was accomplished using a custom data

access layer that navigated the relationships

defined within the geodatabase system

tables and acted as a means of interfacing

with the objects stored within.

Figure 2 shows the n-tier application logic

developed within Application 2.

 The business logic within

Application 2 resides within the database as

a pair of stored procedures that query the

geodatabase system tables that hold objects

defining relationship classes, tables and field

information. Figure 3 depicts the structure

of GDB systems tables queried within the

custom stored procedures.

 The first stored procedure accepts a

layer name as a parameter and returns a list

of relationship class names where the

identified layer is the origin object class.

The second stored procedure accepts the

object ID of a spatial feature and the name

of a relationship class object, for example

“Lakes_has_Inspections” and returns a table

of related values. The stored procedures are

designed to be called through a web services

by the client-tier. Table 1 describes input

parameters and results of each stored

procedure._____________________

http://en.wikipedia.org/wiki/HTTP

7

Figure 2. Application 2 n-tier diagram.

Figure 3. Geodatabase system tables used by

Application 2.

The application logic within the

client-tier of Application 2 was designed to

query the first stored procedure to get a list

of relationship classes related to the

identified feature and then used the resulting

list to recursively query the second stored

procedure to retrieve tables of records

related to the feature.

Table 1. Stored procedure inputs and results.

 The data access layer consists of a

WCF service with a very simple generic

operation contract, “GetData”, through

which the stored procedures are queried by

the client-tier. This is accomplished by

making a call to the stored procedure, and

then casting the results to an anonymous

.NET IEnumerable object. Generally

speaking, an IEnumerable object consists of

a collection of collections. In this case each

enumerable consists of a set of key-value

pairs; fieldname, field value. The

enumerable object is then serialized for

transport to the client-tier. The code in

listing 1 shows a portion of the operation

contract for the service. The GetData

methods accept a query parameter which

contains a query used to execute one of the

stored procedures.

Listing 1. Code sample from the operation contract

of the web service used in Application 2.

namespace Application2
{
 [ServiceContract(Namespace = "")]

Stored

Procedure

Input Parameters Result

ListRelates Featureclass name A table containing a row
for each relationship with

a single column;
RELATIONSHIPNAME

QueryRelated Relationship class name

ObjectID

Anonymous table of

related results.

8

 public class MyService
 {
 [OperationContract]
 public
IEnumerable<Dictionary<string, object>>
GetData(string query) {
 var table =
GetDataTable(query);
 var columns =
table.Columns.Cast<DataColumn>();
 return
table.AsEnumerable().Select(r =>
columns.Select(c =>
 new { Column =
c.ColumnName, Value = r[c] })
 .ToDictionary(i => i.Column,
i => i.Value != DBNull.Value ? i.Value :
null))
 }

On the client-tier, a custom class was

included to iterate the enumerable objects

returned by the service in order to recreate a

datatable from it. The resulting datatable

object is used within the user interface

application logic. If the request sends a

query string to query the second stored

procedure for related records based on a

relationship class, the result will be bound to

a Silverlight data grid control.

Analysis Methods

Both applications were tested by

implementing a set of real-life use case

scenarios, designed to uphold development

objectives. The performance and code

maintenance requirements of the two study

applications were assessed by implementing

an automated black-box type testing created

using the Microsoft Silverlight Unit Testing

Framework.

Use Case Scenario

Both applications were tested based on a

typical use case scenario modeled in figure

4, which was designed to verify that the

functional requirements and development

objectives were met.

Figure 4. Use case model depicting primary actors

within a GIS system and tasks performed.

The use case diagram shown in

figure four illustrates the actors and the tasks

that each actor would carry out within the

GIS system. Table 2 details what

applications were to be used by each actor to

carry out GIS tasks displayed in the model.

Both of the study applications were intended

for use by water quality staff to query data

while the ArcGIS desktop applications were

used to perform other GIS tasks like schema

management.

 In conversational form, a typical use

case outline for either of the study

applications would occur as follows:

 Actor 1 (a water quality staff

member) runs the application from a

known URL and is presented with a

map displaying the spatial locations

of water body features within the

city.

 Actor 1 navigates the map using

typical web map navigation key

clicks and identifies a water body

feature of interest.

 Actor 1 uses the cursor to click on a

water body feature and is presented

with data within a tab control. Each

Water

Quality Staff

Water Quality

Specialist

GIS Admin

view records

related to spatial

features

insert, update

and delete

spatial data

modify

geodatabase

schema

9

tab presents one or many records

from a single table related to the

selected water body. There is one

tab for each relationship class

defined within the geodatabase for

the selected feature class.

Table 2. Tasks performed by use case actors.

Actor Application

Used

Task

(Actor 1)

WQ Staff

Study

Applications

1 & 2

Query spatial features to

view related records for

past inspections, WQ

test, and work orders.

(Actor 2)

GIS

Admin

ArcGIS Administer schema

changes to geodatabase

including adding or

deleting columns, tables,

and relationships as the

database evolves.

(Actor 3)

Water

Specialist

ArcGIS Add spatial features and

records to WQ database

to document tests,

inspections, and work

orders.

 Both web applications were tested

using the use case model described above

and assessed for performance. Insert, update

and delete operations as well as schema

changes to the geodatabase were performed

using the ArcGIS Client applications. Table

3 lists the order of the staged schema

changes and unit test rounds.

 The order of the tasks above was

intended to inclement the amount of impact

made on the geodatabase schema in order to

test the individual affects of various schema

changes.

Testing

A black-box type testing strategy was

designed to compare the performance of the

two applications under schema evolution.

Black-box testing (also called functional

testing) is testing that ignores the internal

mechanism of a system or component and

focuses solely on the outputs generated in

response to selected inputs and execution

Table 3. Detailed, ordered task list for testing study

applications.

Testing

Stage

Application

Used

Task

Stage 1 Apps 1&2 Test functionality via unit

tests with no changes to

database.

Stage 2 ArcGIS Add 2 features to the

Lakes Featureclass.

Apps 1&2 Test functionality via unit

tests.

Stage 3 ArcGIS Add a new column to the

alumtreatments table.

Apps 1&2 Test functionality via unit

tests.

Stage 4 ArcGIS Add new standalone table

and relationship class

relating Lakes,

Stormbasins, and

Wetlands to the new table.

Apps 1&2 Test functionality via unit

tests.

conditions (IEEE, 1990). The tests were

automated using a unit testing framework

and were run under controlled conditions.

Each test was designed to emulate an

identify event within the application,

sending in known parameters and testing the

ability of the application to display the

results. A series of mock objects were used

to imitate each valid set of identify results;

i.e., one mock object for each water body

feature (n=834 at stage 1). Fault detection

within the testing application was limited to

a simple pass/fail.

 The testing was performed after a

series of stages designed to emulate schema

evolution in a geodatabase resulting from

the aforementioned use cases.

Results

10

Tables 4 through 7 show the results of the

automated tests for each of the study

applications during each stage of the testing.

Table 4. Unit testing results for stage 1.

Application Pass/Fail Average Time to

Execute (µs)

Application 1 834/0 38275

Application 2 834/0 23881

Table 5. Unit testing results for stage 2.

Application Pass/Fail Average Time to

Execute (µs)

Application 1 836/0 37568

Application 2 836/0 24227

Table 6. Unit testing results for stage 3.

Application Pass/Fail Average Time to

Execute (µs)
Application 1 809/27 37986

Application 2 836/0 24992

Table 7. Unit testing results for stage 4.

Application Pass/Fail Average Time to

Execute (µs)
Application 1 0/836 36487

Application 2 836/0 23129

Both applications performed well during

stage 1 and 2. Both passed 100% of tests

run against 834 (stage 1) and 836 (stage 2)

mock objects. During stage 3, Application 1

failed 27 of 836 tests while Application 2

passed all tests.

 The average executing time is

indicative of execution under “best-case”

circumstances since the client application

and service were all running on the same

workstation, eliminating network factors.

The difference in execution times between

tests run against Application 1 and

Application 2 was not large and so,

generally speaking, was similar between the

two applications.

Discussion

Test Results

The 27 failed tests that occurred after the

insertion of a new column in the alum

treatments table likely occurred because 27

water body features had related alum

treatment records and none of the alum

treatment query results reflected the changes

to the underlying data table. This is an

indication that the object-relational mapping

of the EDM is out of sync with the relational

data structure. The number of tests failed by

Application 1 increased in stage 4 because

the addition of a new table and relationship

classes had a larger impact within the

database; affecting more features.

 Throughout the testing Application 2

continued to perform well. Changes made

to the schema of the relational geodatabase

were reflected in the query results displayed

within the application. Application 2 was

made “aware” of these changes in the same

way that an ArcGIS desktop application

does, by querying objects stored in the GDB

system tables.

Considerations

Some features common to both applications

enhanced their ability to accommodate

schema changes. One important feature of

Silverlight is the ability to auto-generate

columns when binding data to a data grid.

Doing so reduces the level of dependence

the application code has on the data

structure since no column names were

referenced within the code.

 Although the unit testing results

indicated that Application 1 failed several

tests due to schema changes to the

underlying database, it is relevant to discuss

the definition of a failed test within this

study. The testing strategy used within this

11

application was designed to fail if a test

result did not reflect accurate results based

on the underlying geodatabase design. This

is noteworthy because in traditional

development terms the application may not

have actually thrown an exception in all

cases. Due to the way that the EDM model

was used to query the database, an exception

may not have been thrown if a column was

added to a table that was abstracted within

the entity, since the entity type doesn’t

possess a property that maps to the column.

Additional ad hoc testing indicated that an

exception would be thrown only if a column

or table that was mapped to an existing

entity property was deleted. In this way, the

EDM approach to data access may be a good

fit for some GIS systems needing to improve

the level of support for schema changes.

However, this does not provide the level of

support for schema changes needed to meet

the development objectives of this study.

 Although Application 2 proved

better able to support schema changes, the

strongly-typed data mapping features of the

EDM used in Application 1 are noteworthy.

The data features of EDM and Silverlight

make it easier to incorporate rich UI features

like better data validation on the client-tier.

For example, prebuilt Silverlight controls,

like the calendar control, depend on

explicitly defined field types like date fields.

This level of data validation was not easily

incorporated within Application 2 due to the

generic nature of the data objects.

 There were also some notable

disadvantages to leveraging the geodatabase

system tables that became evident in the

development of Application 2. The issues

encountered were primarily caused by the

complexity of the geodatabase system. One

example of this is apparent when examining

the graphic in Appendix 2, which shows a

display of the completed water quality

application (Application 2). Note that there

is a tab in the tab control and table populated

with related data based on a relationship

class used to facilitate feature-linked

annotation. This was not a desirable

outcome. Additional logic would need to be

added to the stored procedures to exclude

this type of relationship.

Conclusion

Leveraging the ESRI object-relational

geodatabase model in GIS application

development can provide a means of

accommodating schema evolution that

commonly occurs within a GIS system.

Stored procedures and TSQL have proven to

be an efficient method for querying the

geodatabase system tables while minimizing

the amount of impedance mismatch within

the object-oriented code. The explicit

configuration used within EDM results in

greater dependence on the underlying

relational data structure and additional code

maintenance is needed to support schema

changes.

Acknowledgments

I would like to sincerely thank the City of

Eagan, MN Water Quality and GIS staff,

namely Tami Maddio, Leah Sperduto and

Jesse Koehle for identifying the needs

addressed within this study as well as for

providing support throughout the

development process. In addition to sharing

their knowledge of water quality data and

workflows, they also contributed input for

use-case modeling, needs assessment,

application design and development. I

would also like to extend thanks to the GIS

staff at St. Mary’s University of Minnesota

Department of Resource Analysis for their

assistance with this project, especially, Mr.

Patrick Thorsell for his assistance with

evaluating and formatting the

documentation.

12

References

Adya, A., Blakeley, J.A., Melnik, S.,

Muralidhar, S., and the ADO.NET

Team. 2007. Anatomy of the ADO.NET

Entity Framework. ACM SIGMOD Int.

Conf. on Management of Data

(SIGMOD’07), June 12–14, 2007,

Beijing, China. Retrieved on March 20,

2010 from http://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.148.

1125&rep=rep1&type=pdf.

Ambler, S.W. 1998. Process Patterns:

Building Large-Scale Systems Using

Object Technology. New York: SIGS

Books/Cambridge University Press.

An, Y., Hu, x., and Song, I. 2008. Round-

Trip Engineering for Maintaining

Conceptual-Relational Mapping.

Advanced Information Systems

Engineering Lecture Notes in Computer

Science, Volume 5074/2008, 296-311,

DOI: 10.1007/978-3-540-69534-9_24.

Berstein, A., Sergey, M., and Terwillinger,

J.F. 2008. Language-Integrated

Querying of XML Data in SQL Server.

Proceeding of the Very Large Database

Endowment 2008. 1, 1, 1396-1399.

Retrieved on June 6, 2010 from

http://www.vldb.org/pvldb/1/

1454182.pdf.

Chen, J. and Huang, Q. 1995. Eliminating

the Impedance Mismatch Between

Relational Systems and Object-Oriented

Programming Languages. In Proceedings

of the 6th International Hong Kong

Database Workshop.

Flood, B., 2002. Building GIS Web

Services With .NET and ArcObjects. In

Proceedings of the 2001 ESRI User

Conference. Paper 191.

Ghoda, A. 2010. Introducing Silverlight 4.

Apress. 613-635. Print.

IEEE. 1990. "IEEE Standard 610.12-

1990, IEEE Standard Glossary of

Software Engineering Terminology,"

Retrieved on May 10, 2010 from

http://ieeexplore.ieee.org/xpl/freeabs_all.j

sp?arnumber=159342.

Klein, S. 2010. Pro SQL Server 2008

Entity Framework. Apress. 1-202. Print.

Laframboise, A. 2006. Cross-product

Development with ArcGIS. In

Proceedings of the ESRI Developer

Summit 2006. Retrieved on May 5, 2010

from http://proceedings.esri.com/library/

userconf/devsummit06/papers/cross-

product.pdf.

Wikipedia. 2010. Object-relational

impedance mismatch. Wikipedia

Foundation inc. Retrieved on June 2,

2010 from http://en.wikipedia.org/wiki/

Object-relational_impedance_mismatch.

Worboys, M., and Duckham, M. 2004.

GIS: a Computing Perspective. Boca

Raton, FL: CRC, 2004. 78-80. Print.

Zdonik, S.B. and Maier, D. 1990.

Fundamentals of object-oriented

databases. In S.B. Zdonik and D. Maier,

editors, Readings in Object-Oriented

Database Systems, pages 1–32.Morgan

Kaufmann Publishers, 1990.

_

http://citeseerx.ist.psu.edu/
http://www.springerlink.com/content/978-3-540-69533-2/
http://www.springerlink.com/content/978-3-540-69533-2/
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/0302-9743/
http://proceedings.esri.com/library/
http://en.wikipedia.org/wiki/%20Object-relational_impedance_mismatch
http://en.wikipedia.org/wiki/%20Object-relational_impedance_mismatch

13

Appendix 1. Entity model diagram of the LAKE entity.

14

Appendix 2. A graphic display showing the completed Water Quality Application 2 with the

results of an “identify” operation.

