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Abstract 

 

This paper presents two data access strategies that employ different data abstraction and 

serialization methods applied to a working geodatabase to facilitate development of a web 

mapping application. The goal of the study was to compare methods used to minimize the effects 

of object-relational impedance mismatch, a well-known set of issues that result from the 

integration of relational data and object-oriented programming languages.  This study focused 

specifically on increasing support for schema evolution; a common object-relational impedance 

issue within GIS systems. The study was conducted using a real-life, transactional geodatabase 

used to maintain water quality data.  The database and test applications were designed to meet 

real-life functional requirements.  The first method employed the use of entity modeling 

techniques in the application mid-tier to map relational geospatial data from the relational 

database management system to an object-oriented model in order to facilitate data access, 

serialization and transport via a web service; the second procedure maintained application logic 

within the object-relational geodatabase system tables and employed a generic abstraction 

method for serialization within a web service. The resulting n-tier applications were tested by 

applying a unit test strategy based on real-life use case scenarios and the results were compared 

to assess the extensibility, maintainability and richness of the result. The application that 

leveraged the object-relational model of the geodatabase system was found to provide better 

support for schema changes to the geodatabase resulting in less maintenance, while the 

application constructed using entity modeling of relational data resulted in richer UI features but 

was not able to support schema changes to the geodatabase.   

 

Introduction 

 

Relational databases are a widespread 

storage format for geospatial data.  

Commonly used development frameworks 

for web mapping solutions are designed for 

object-oriented development.  A well-known 

set of problems, commonly referred to as 

object-relational impedance mismatch, 

occur when applications are developed using 

object-oriented concepts to access data 

persisted in relational databases.  Due to the 

increasingly widespread implementation of 

service-oriented (SOA), multi-tier (also 



2 

 

known as n-tier) architecture there is an 

increased need to improve the 

interoperability, and extensibility of data 

access services.  This need is also present 

within GIS application development where 

data services are often used to provide 

access to relational schema that undergo 

periodic database refactoring as geodatabase 

schema evolve over time.    

 According to Ambler (1998), object-

relational impedance mismatch is defined as 

follows: “The difference resulting from the 

fact that relational theory is based on 

relationships between tuples (records) that 

are queried, whereas the object paradigm is 

based on relationships between objects that 

are traversed”.   Interoperability of these 

systems is often achieved through the 

implementation of object-relational mapping 

(ORM).   ORM is the process of mapping 

objects to relational data in order to 

overcome the impedance mismatch.  N-tier 

applications are applications where 

presentation, service, business logic and data 

tiers are logically and sometimes physically 

separate.  In n-tier applications the ORM 

process occurs within the mid-tier, between 

the data and service tiers.  This often results 

in common language runtime (CLR) objects.   

Relational data are abstracted into objects 

that integrate easily with popular object-

oriented languages.  The purpose of entity 

modeling within this process is to project 

data from a logical relational model to an 

object-oriented language.  This results in 

compiled, object-relational mappings that 

can be queried and manipulated using 

object-oriented languages, often from 

multiple application tiers.   

 Entity modeling is a form of ORM 

that raises the level of abstraction within the 

mid-tier.    In an entity data model (EDM), 

entities and associations can be used to 

represent conceptual, as opposed to 

relational, models as they are abstracted into 

objects.  Entities represent top-level objects, 

for example a row or a tuple, with identities, 

while associations are used to relate two or 

more entities (Adya, A., et al., 2007).  In n-

tier development the objects that result from 

EDM provide better multi-tier access since 

these objects can be serialized using an 

interchange format such as XML or JSON 

for web service invocation and desterilized 

within the presentation (client) tier as 

needed. The study described in this paper 

uses an Entity Data Model (EDM) as a 

means of object-relational mapping. 

 Unfortunately, ORM/EDM does not 

entirely overcome the impedance mismatch 

problem.  Although EDM frameworks like 

the Microsoft ADO.NET Entity Framework, 

were designed to reduce object-relation 

impedance mismatch as it relates to code 

semantics and inefficiencies (Adya, et al., 

2007), some definitions of object-relational 

impedance mismatch identify ORM/EDM as 

a cause of impedance mismatch, rather than 

a solution (Chen and Huang, 1995); 

especially when mappings between objects 

and tables are made in a very 

straightforward way (Wikipedia, 2010).  

This is because when the relational schema 

changes, which can be quite common in 

transactional GIS systems, the relational 

model and the object model become 

inconsistent and the mapping between the 

two models must be updated to maintain 

synchronization.  In an application with 

ORM CLR objects, synchronization would 

require code changes and recompilation of 

the ORM assemblies. Although, methods 

have been proposed for maintaining the 

consistency of these mappings under 

database evolution (An, et al., 2008), these 

methods are quite complex and difficult to 

implement without an existing framework in 

place.   

 One alternative to ORM is to employ 

an Object-Relational Database Management 
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System (ORDBMS).  ESRI’s geodatabase is 

an ORDBMS.  It essentially consists of a 

RDBMS core with an object-oriented shell 

or layer through which applications access 

and manage persistent data.   The object-

oriented model within the RDBMS consists 

of a series of relational tables, referred to as 

the Geodatabase System Tables, which hold 

data used to instantiate objects. Metadata for 

all objects within a geodatabase, for 

example feature classes, tables and 

relationships classes, is persisted in the 

Geodatabase System Tables.  Relational GIS 

data is stored within the RDBMS within a 

set of business tables.  In ORDBMS, object-

oriented programming concepts such as 

polymorphism and inheritance result in 

advantages for application developers and 

tend to minimize object-relational 

impedance mismatch (Worboys and 

Duckham, 2004).   

 One way ORDMSs reduce 

impedance mismatch is by increasing 

support for schema evolution.   A common 

feature of object-oriented systems is schema 

management including the ability to create 

and change class schemes (Worboys and 

Duckham, 2004).  This feature is part of 

ESRI’s Geodatabase System as well.  It is 

apparent in the ability of GIS practitioners to 

administer schema changes using ArcGIS 

data management tools.  Typical ESRI 

Geodatabase client applications like ArcMap 

are able to support schema changes to 

underlying databases due to the object-

relational model employed by the system.  

Consider the example of relationships 

between spatial features.  These 

relationships are defined within the 

geodatabase as a relationship class object.  

In this way new relationships can be defined 

at any time.  GIS client applications are built 

using ArcObjects to interface with the 

objects defined within the GDB System 

Tables.  As a component of the object-

relational GIS system, they are able to 

support schema changes and evolve as the 

underlying geodatabase changes without the 

need for code maintenance.              

 Although ArcObjects are a viable 

and supported solution to the issues of 

impedance mismatch, third party 

Applications Programming Interface (API) 

dependence is an issue for several reasons.  

The ArcGIS Server Web APIs that have 

been developed to work with the ESRI GIS 

systems have limited access to fine-grained 

ArcObjects within the service, and 

presentation tier of n-tier technology such as 

Silverlight.  It is also documented that 

application performance is adversely 

affected by frequent calls to fine-grained 

ArcObjects (Laframbiose, 2006; Flood, 

2002).  In addition, Silverlight was 

developed to mesh seamlessly with 

ADO.NET Entity Framework, a robust 

EDM solution, as well as SOA frameworks, 

making an ArcObjects-free solution 

appealing.   For these reasons, there is a 

need to investigate alternate solutions that 

overcome the object-relational impedance 

mismatch without heavy reliance on 

proprietary APIs. 

 Some strategies for minimizing 

impedance mismatch leverage RDBMS 

programming languages such a Transact-

SQL (TSQL).  As Zdonik and Maier (1990) 

point out: “a loss of information occurs at 

the interface, if the programming language 

is unable to represent database structures, 

such as relationships, directly.”  This is 

essentially what happens when the objects 

and the relational model, joined by an ORM, 

become out-of-sync due to schema changes 

to the relational model.  Zdonik and Maier 

(1990) imply that impedance mismatch is 

proportional to the amount of interface that 

occurs between the relational and object-

oriented components of the application, 

therefore, maintaining more of the 
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application within one system would lower 

impedance mismatch.  Although not entirely 

computationally complete when compared 

to an object-oriented language, stored 

procedures and TSQL come very close.  

Implementing stored procedures that 

navigate the ArcSDE System Tables to 

provide access to objects would likely 

overcome many of the impedance mismatch 

problems that occur within GIS systems and 

result in a solution that can support schema 

changes.   

 In addition to leveraging RDBMS 

languages such as TSQL to reduce 

impedance mismatch, others have suggested 

using loosely-typed object mappings to 

increase “data independence” within 

systems (Bernstein, et al., 2008).  This 

differs from typical EDM strategies where 

relational schema is mapped to strongly-

typed CLR objects. This concept could be 

implemented within the mid-tier of the 

application as a way of exposing data to 

client applications via web services without 

creating hard-coded objects that are 

dependent on explicit data structures.  The 

result would be more capable of supporting 

schema changes. 

 

Data 

 

Water Quality Database  

 

Several years’ worth of water quality data 

has been collected by specialists within the 

city of Eagan, Minnesota and has resulted in 

a robust geodatabase that is primarily 

maintained and developed by water quality 

staff with knowledge of ArcGIS and 

Geodatabase schema management 

techniques.  The database consists mainly of 

water body feature classes; lakes, wetlands, 

and storm basins, and related water quality 

data stored within stand alone tables.  

Relationship classes are defined to relate the 

water body features to the standalone tables, 

typically in a one-to-many specificity.  

Attribute domains are used where ever 

possible to maintain the integrity of the 

tabular data.   

 The Water Quality geodatabase runs 

on ArcSDE 9.3.1 and Microsoft SQL Server 

2008.  A geodatabase data model diagram of 

the water quality database is displayed in 

Appendix 3.  

 

Methods  

 

Application Development Objectives  

 

There were two primary objectives 

considered when developing the study 

applications.  As stated earlier, the first 

objective was to maintain the level of 

schema management afforded by ArcGIS, 

while minimizing or eliminating the need for 

code or relational mapping maintenance and 

application recompiles.  The second was to 

improve the end user experience for users 

who have limited GIS knowledge and who 

would primarily be viewing data related in a 

one-to-many cardinality to water body 

features in the Geodatabase.  In addition, 

typical web mapping application 

development objectives were upheld.   

 

Limitations  

 

Since the intent of the case study application 

was to provide an interface for internal 

employees to access the water quality 

database and not individuals from the 

general public, security was not a 

consideration during the development of the 

services or application. 

 Additionally, the geodatabase 

versioning workflow used by staff to 

maintain the water quality data was 

simplistic and implemented the option to 

move edits to base tables.  For this reason, 
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there was no need to consider more complex 

versioning scenarios within this study. 

 

Development Methods 

 

Both study applications used in this 

comparison were developed using C# and 

Microsoft .NET 4.0 within the Microsoft 

Visual Studio 2010 Environment.  The .NET 

framework was selected as the platform for 

development for several reasons. Mainly, 

the .NET framework includes well 

documented and easily integrated 

frameworks for developing each tier of the 

study application including EDM, web data 

service development (Klein, 2010), as well 

as client interface development and 

automated unit testing (Ghoda, 2010). 

 The presentation layer, a portion of 

client-tier, for both study applications was 

developed using consistent methods.  Both 

client-tier applications were developed using 

Microsoft Silverlight version 4.0.  The 

client-tier consists of a map-centric user 

interface (UI) constructed using the ArcGIS 

Server API for Microsoft Silverlight 2.0.  A 

simple ArcGIS Server web mapping service 

was used to publish the water body features 

(lakes, storm basins and wetlands) as a 

single service.  The service was consumed 

within the ArcGIS Server Silverlight map 

control.  Both applications included 

traditional GIS “identify” functionality.   

The interface also contained a Silverlight tab 

control designed to display a series of data 

grids that hold records related to the water 

body features.  The data grids were 

populated with related records based on the 

results of an identify event. 

 

Application 1 

 

Application 1 employed a data access 

strategy that was developed using an entity 

model in the mid-tier to map data from the 

business tables of the waters geodatabase to 

data objects used within the application.  

Figure 1 depicts Application 1 as an n-tier 

application with an Entity model represented 

within the mid tier and client tiers.  

 The EDM of the water quality 

geodatabase was designed using Microsoft 

ADO.NET Entity Framework data modeling 

tools.  The water quality database feature 

classes, tables and relationship classes were 

redefined within the entity model context.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Application 1 n-tier diagram. 
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Associations between feature class business 

tables and standalone tables were defined 

based on the characteristics of existing 

relationship classes within the geodatabase.  

The cardinality of each relationship was 

defined within the multiplicity property of 

the association.  Appendix 1 illustrates the 

structure of the lakes entity object.  

Wetlands and storm basin entity types were 

created using similar methods. 

 This process resulted in a series of 

.NET classes that defined strongly-typed 

objects known as entity types.  Each entity 

type mapped a feature class to its associated 

tables. Data in the tables was accessed 

through properties and methods of the entity 

type.   

 A type of Windows Communication 

Service (WCF) web service, specifically a 

Domain Service, was used to expose the 

entity model.  WCF Data Services expose 

data, often represented as EDM entity 

objects, via web services accessed over 

HTTP.  In addition to exposing data over 

HTTP, WCF Domain Services manage the 

serialization of data objects between the 

server-side (mid-tier) and the client-tier.   

The Domain Service that was implemented 

within Application 1 enabled the query of 

EDM types via domain context objects.  

Context objects could be considered a 

“mirror image” of the EDM objects on the 

client.  The resulting server-side and client-

side classes enabled the query of data via 

strongly-typed CLR object instances of the 

entity types from multiple application tiers. 

 Application logic was added to the 

domain service class so that data operations 

could be exposed through the service.   

Since the backend geodatabase included 

aliased fields, business logic was added to 

the client tier to accommodate functionality 

within the EDM Domain Data Service 

context. 

Application 2  
 

Application 2 was designed to demonstrate 

the use of TSQL and generic data services to 

eliminate object-relational impedance 

mismatch within the application.  Rather 

than creating mapping between the business 

tables within the relational geodatabase and 

an object-oriented language, in Application 

2 objects were accessed by querying the 

geodatabase system tables using TSQL.  

Since ArcObjects were not readily available 

for development within the web tier of the 

application, an equivalent set of objects 

needed to be developed to provide access to 

the data within the object-relational model.  

This was accomplished using a custom data 

access layer that navigated the relationships 

defined within the geodatabase system 

tables and acted as a means of interfacing 

with the objects stored within.   

Figure 2 shows the n-tier application logic 

developed within Application 2.   

 The business logic within 

Application 2 resides within the database as 

a pair of stored procedures that query the 

geodatabase system tables that hold objects 

defining relationship classes, tables and field 

information.  Figure 3 depicts the structure 

of GDB systems tables queried within the 

custom stored procedures.  

 The first stored procedure accepts a 

layer name as a parameter and returns a list 

of relationship class names where the 

identified layer is the origin object class.  

The second stored procedure accepts the 

object ID of a spatial feature and the name 

of a relationship class object, for example 

“Lakes_has_Inspections” and returns a table 

of related values.  The stored procedures are 

designed to be called through a web services 

by the client-tier.  Table 1 describes input 

parameters and results of each stored 

procedure._____________________                       

http://en.wikipedia.org/wiki/HTTP
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Figure 2. Application 2 n-tier diagram. 

 

 

 
Figure 3.  Geodatabase system tables used by 

Application 2. 
 

The application logic within the 

client-tier of Application 2 was designed to 

query the first stored procedure to get a list 

of relationship classes related to the 

identified feature and then used the resulting 

list to recursively query the second stored 

procedure to retrieve tables of records 

related to the feature.  

                             

 

 

 

 

 

 

 

 

 

 
 

 

 

Table 1. Stored procedure inputs and results. 

 

 The data access layer consists of a 

WCF service with a very simple generic 

operation contract, “GetData”, through 

which the stored procedures are queried by 

the client-tier. This is accomplished by 

making a call to the stored procedure, and 

then casting the results to an anonymous 

.NET  IEnumerable object.  Generally 

speaking, an IEnumerable object consists of 

a collection of collections.  In this case each 

enumerable consists of a set of key-value 

pairs; fieldname, field value.  The 

enumerable object is then serialized for 

transport to the client-tier.  The code in 

listing 1 shows a portion of the operation 

contract for the service.  The GetData 

methods accept a query parameter which 

contains a query used to execute one of the 

stored procedures.   
 

Listing 1.  Code sample from the operation contract 

of the web service used in Application 2. 

 
namespace Application2 
{ 
    [ServiceContract(Namespace = "")] 

Stored 

Procedure 

Input Parameters Result 

ListRelates Featureclass name A table containing a row 
for each relationship with 

a single column; 
RELATIONSHIPNAME  

QueryRelated Relationship class name 

ObjectID 

Anonymous table of 

related results. 
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    public class MyService 
    { 
        [OperationContract] 
        public 
IEnumerable<Dictionary<string, object>> 
GetData(string query)        { 
            var table = 
GetDataTable(query); 
            var columns = 
table.Columns.Cast<DataColumn>(); 
            return 
table.AsEnumerable().Select(r => 
columns.Select(c => 
              new { Column = 
c.ColumnName, Value = r[c] }) 
             .ToDictionary(i => i.Column, 
i => i.Value != DBNull.Value ? i.Value : 
null)) 
        }      
         

On the client-tier, a custom class was 

included to iterate the enumerable objects 

returned by the service in order to recreate a 

datatable from it.  The resulting datatable 

object is used within the user interface 

application logic.  If the request sends a 

query string to query the second stored 

procedure for related records based on a 

relationship class, the result will be bound to 

a Silverlight data grid control.   

        

Analysis Methods  

                                                                  

Both applications were tested by 

implementing a set of real-life use case 

scenarios, designed to uphold development 

objectives.  The performance and code 

maintenance requirements of the two study 

applications were assessed by implementing 

an automated black-box type testing created 

using the Microsoft Silverlight Unit Testing 

Framework. 

 

Use Case Scenario  

 

Both applications were tested based on a 

typical use case scenario modeled in figure 

4, which was designed to verify that the 

functional requirements and development 

objectives were met.   

 

 
 
Figure 4.  Use case model depicting primary actors 

within a GIS system and tasks performed. 

 

The use case diagram shown in 

figure four illustrates the actors and the tasks 

that each actor would carry out within the 

GIS system.  Table 2 details what 

applications were to be used by each actor to 

carry out GIS tasks displayed in the model.  

Both of the study applications were intended 

for use by water quality staff to query data 

while the ArcGIS desktop applications were 

used to perform other GIS tasks like schema 

management. 

 In conversational form, a typical use 

case outline for either of the study 

applications would occur as follows: 

 Actor 1 (a water quality staff 

member) runs the application from a 

known URL and is presented with a 

map displaying the spatial locations 

of water body features within the 

city.   

 Actor 1 navigates the map using 

typical web map navigation key 

clicks and identifies a water body 

feature of interest.   

 Actor 1 uses the cursor to click on a 

water body feature and is presented 

with data within a tab control. Each 

Water 

Quality Staff 

Water Quality 

Specialist 

GIS Admin 

view records 

related to spatial 

features 

insert, update 

and delete 

spatial data 

modify 

geodatabase 

schema  
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tab presents one or many records 

from a single table related to the 

selected water body.  There is one 

tab for each relationship class 

defined within the geodatabase for 

the selected feature class. 
 

Table 2.  Tasks performed by use case actors. 

 

Actor Application 

Used 

Task  

(Actor 1) 

WQ Staff 

Study  

Applications 

1 & 2 

Query spatial features to 

view related records for 

past inspections, WQ 

test, and work orders. 

(Actor 2) 

GIS 

Admin 

ArcGIS  Administer schema 

changes to geodatabase 

including adding or 

deleting columns, tables, 

and relationships as the 

database evolves.  

(Actor 3) 

Water 

Specialist 

ArcGIS Add spatial features and 

records to WQ database 

to document tests, 

inspections, and work 

orders. 

 

  Both web applications were tested 

using the use case model described above 

and assessed for performance.  Insert, update 

and delete operations as well as schema 

changes to the geodatabase were performed 

using the ArcGIS Client applications.  Table 

3 lists the order of the staged schema 

changes and unit test rounds. 

 The order of the tasks above was 

intended to inclement the amount of impact 

made on the geodatabase schema in order to 

test the individual affects of various schema 

changes. 

 

Testing  

 

A black-box type testing strategy was 

designed to compare the performance of the 

two applications under schema evolution.  

Black-box testing (also called functional 

testing) is testing that ignores the internal 

mechanism of a system or component and 

focuses solely on the outputs generated in 

response to selected inputs and execution 

 
Table 3.  Detailed, ordered task list for testing study 

applications. 

 

Testing 

Stage 

Application 

Used 

Task 

Stage 1 Apps 1&2 Test functionality via unit 

tests with no changes to 

database. 

Stage 2 ArcGIS Add 2 features to the 

Lakes Featureclass. 

Apps 1&2 Test functionality via unit 

tests. 

Stage 3 ArcGIS Add a new column to the  

alumtreatments table. 

Apps 1&2 Test functionality via unit 

tests. 

Stage 4 ArcGIS Add new standalone table 

and relationship class 

relating Lakes, 

Stormbasins, and 

Wetlands to the new table. 

Apps 1&2 Test functionality via unit 

tests. 

 

conditions (IEEE, 1990). The tests were 

automated using a unit testing framework 

and were run under controlled conditions.  

Each test was designed to emulate an 

identify event within the application, 

sending in known parameters and testing the 

ability of the application to display the 

results.  A series of mock objects were used 

to imitate each valid set of identify results; 

i.e., one mock object for each water body 

feature (n=834 at stage 1).  Fault detection 

within the testing application was limited to 

a simple pass/fail.   

 The testing was performed after a 

series of stages designed to emulate schema 

evolution in a geodatabase resulting from 

the aforementioned use cases.   

 

Results 
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Tables 4 through 7 show the results of the 

automated tests for each of the study 

applications during each stage of the testing. 
 

Table 4.  Unit testing results for stage 1. 

Application Pass/Fail Average Time to 

Execute (µs) 

Application 1 834/0 38275  

Application 2 834/0 23881 

 
Table 5.  Unit testing results for stage 2. 

Application Pass/Fail Average Time to 

Execute (µs) 

Application 1 836/0 37568 

Application 2 836/0 24227 

 
Table 6.  Unit testing results for stage 3. 

Application Pass/Fail Average Time to 

Execute (µs) 
Application 1 809/27 37986 

Application 2 836/0 24992 

 
Table 7.  Unit testing results for stage 4. 

Application Pass/Fail Average Time to 

Execute (µs) 
Application 1 0/836 36487 

Application 2 836/0 23129 

 

  

Both applications performed well during 

stage 1 and 2.  Both passed 100% of tests 

run against 834 (stage 1) and 836 (stage 2) 

mock objects.  During stage 3, Application 1 

failed 27 of 836 tests while Application 2 

passed all tests.   

 The average executing time is 

indicative of execution under “best-case” 

circumstances since the client application 

and service were all running on the same 

workstation, eliminating network factors.  

The difference in execution times between 

tests run against Application 1 and 

Application 2 was not large and so, 

generally speaking, was similar between the 

two applications. 

 

Discussion 

 

Test Results 

 

The 27 failed tests that occurred after the 

insertion of a new column in the alum 

treatments table likely occurred because 27 

water body features had related alum 

treatment records and none of the alum 

treatment query results reflected the changes 

to the underlying data table.   This is an 

indication that the object-relational mapping 

of the EDM is out of sync with the relational 

data structure.  The number of tests failed by 

Application 1 increased in stage 4 because 

the addition of a new table and relationship 

classes had a larger impact within the 

database; affecting more features. 

 Throughout the testing Application 2 

continued to perform well.  Changes made 

to the schema of the relational geodatabase 

were reflected in the query results displayed 

within the application. Application 2 was 

made “aware” of these changes in the same 

way that an ArcGIS desktop application 

does, by querying objects stored in the GDB 

system tables. 

 

Considerations 

 

Some features common to both applications 

enhanced their ability to accommodate 

schema changes.  One important feature of 

Silverlight is the ability to auto-generate 

columns when binding data to a data grid.   

Doing so reduces the level of dependence 

the application code has on the data 

structure since no column names were 

referenced within the code.                     

 Although the unit testing results 

indicated that Application 1 failed several 

tests due to schema changes to the 

underlying database, it is relevant to discuss 

the definition of a failed test within this 

study.  The testing strategy used within this 
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application was designed to fail if a test 

result did not reflect accurate results based 

on the underlying geodatabase design.  This 

is noteworthy because in traditional 

development terms the application may not 

have actually thrown an exception in all 

cases.  Due to the way that the EDM model 

was used to query the database, an exception 

may not have been thrown if a column was 

added to a table that was abstracted within 

the entity, since the entity type doesn’t 

possess a property that maps to the column.  

Additional ad hoc testing indicated that an 

exception would be thrown only if a column 

or table that was mapped to an existing 

entity property was deleted.  In this way, the 

EDM approach to data access may be a good 

fit for some GIS systems needing to improve 

the level of support for schema changes.  

However, this does not provide the level of 

support for schema changes needed to meet 

the development objectives of this study.  

 Although Application 2 proved 

better able to support schema changes, the 

strongly-typed data mapping features of the 

EDM used in Application 1 are noteworthy.  

The data features of EDM and Silverlight 

make it easier to incorporate rich UI features 

like better data validation on the client-tier.  

For example, prebuilt Silverlight controls, 

like the calendar control, depend on 

explicitly defined field types like date fields.  

This level of data validation was not easily 

incorporated within Application 2 due to the 

generic nature of the data objects.         

 There were also some notable 

disadvantages to leveraging the geodatabase 

system tables that became evident in the 

development of Application 2.  The issues 

encountered were primarily caused by the 

complexity of the geodatabase system.  One 

example of this is apparent when examining 

the graphic in Appendix 2, which shows a 

display of the completed water quality 

application (Application 2).  Note that there 

is a tab in the tab control and table populated 

with related data based on a relationship 

class used to facilitate feature-linked 

annotation.  This was not a desirable 

outcome.  Additional logic would need to be 

added to the stored procedures to exclude 

this type of relationship.  

Conclusion  

Leveraging the ESRI object-relational 

geodatabase model in GIS application 

development can provide a means of 

accommodating schema evolution that 

commonly occurs within a GIS system.  

Stored procedures and TSQL have proven to 

be an efficient method for querying the 

geodatabase system tables while minimizing 

the amount of impedance mismatch within 

the object-oriented code.   The explicit 

configuration used within EDM results in 

greater dependence on the underlying 

relational data structure and additional code 

maintenance is needed to support schema 

changes. 
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Appendix 1.  Entity model diagram of the LAKE entity.  
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Appendix  2.  A graphic display showing the completed Water Quality Application 2 with the 

results of an “identify” operation. 

 


