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 However, the whole process is 
referred to more loosely as classification by 
Spatial Analyst Tools in Environmental 
Systems Research Institute (ESRI) ArcGIS 
9.x. This discussion focuses on the 
classification of pixels rather than 
delineation between regions. Because the 
ESRI ML classifier is being used, the whole 
process will be referred to as classification 
for the purpose of this project. 
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Multilayer Classification of Remotely 
Sensed Images 

A trained human interpreter may be able to 
classify grayscale images, but automated 
classification, especially a tool like the ESRI 
ArcGIS ML classifier requires multilayer 
images (Landgrebe, 2003; Richards and Jia, 
2006; Tso and Mather, 2001). Ordinarily, 
pixel-by-pixel classification is performed on 
multispectral or multitemporal images. An 
example of multispectral data is that which 
is produced by the Landsat series of 
satellites. These images include red, green, 
and blue layers and also extra spectral bands 
in the IR (infrared), giving additional 
information about vegetation and geology. 
 An example of multitemporal data 
would be a series of multispectral images 
taken of agricultural land at different times 
during the growing season. As crops grow 
and mature, their spectral signatures change. 

The Need for Greater Classification 
Accuracy and the Purpose of this Project 

When working with six or seven spectral 
layers, e.g. Landsat TM+ datasets, there are 
enough bands to give a definitive spectral 
signature that allows for accurate 
classification. However, in cases where 
there are only three layers in a dataset, such 
as RGB color or color IR images, there is 
too little information to perform an accurate 
classification using the ML classifier tool in 
ESRI ArcGIS 9.x. In that case, additional 
information must be extracted from the 
pixel’s context. 

 
Figure 2.  The Process of Segmentation. 
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 In this project, custom software tools 
have been developed to extract additional 
information based upon the texture within 
each pixel’s neighborhood. Typically, 
texture information is derived from the value 
(brightness) of an RGB image. There is such 
high correlation between the red, green, and 
blue bands (usually over 95%) that it does 
not make sense to extract texture 
information for each spectral band 
(Maenpaa and Pietikainen, 2004).  

Kinds of Classifiers 

Classifiers are broadly divided into two 
kinds: unsupervised and supervised. An 
unsupervised classifier looks for natural 
clustering of data in feature space. These 
clusters in feature space are called spectral 
classes, and they may or may not have 
informational value.  
 Supervised classifiers can be 
“trained.” Classifiers can be taught to 
classify samples according to categories 
known as informational classes. Supervised 
classification is performed by presenting  
training samples, which have class labels 
attached to them, to the classifier. After the 
classifier is taught to assign labeled sample 
vectors to the appropriate classes, then the 
classifier is allowed to classify samples 
whose class is not known. 

 



 

 Supervised classified classifiers are 
further divided into statistical classifiers, 
neural network classifiers, fuzzy logic 
classifiers, and rule-based classifiers. 
 Statistical classifiers can be yet 
further subdivided into parametric and non-
parametric classifiers. Parametric classifiers 
assume classes can be modeled by a 
multivariate normal distribution (Gaussian 
distribution). Non-parametric classifiers do 
not make that assumption. 
 The ML classifier is a parametric 
statistical classifier because it uses statistics 
and it assumes the classes are normally 
distributed. It is therefore important to 
remember that the performance of the ML 
classifier is compromised if the data are not 
normally distributed.  

Goals of Supervised Classification  

There are three goals in the supervised 
classification of pixels (Landgrebe, 2003): 
 

• The classes must have informational 
value. They must correspond to a 
category useful to humans, such as a 
land cover type. 

• The classes must be separable. A 
pixel must be unambiguously 
assignable to one class or another. 

• The set of classes must be 
exhaustive. That is, every pixel must 
have a class into which it can fall – 
including a class labeled “other” 
where pixels may be assigned if they 
do not neatly fit into an existing 
informational class. 

 
 In practice, it is rarely possible to 
achieve all three goals at the same time. 
Classes may overlap, and some pixels could 
be assigned to more than one class. In those 
cases, one is forced to pick the most likely 
class assignment (ML classifier). Other 
pixels may have such a low probability of 

belonging to any class that they are labeled 
“unknown.” 

The Multivariate Normal Distribution  

When the random variable has more than 
one dimension (a vector) one is dealing with 
multivariate statistics. The ML classifier 
makes the assumption that the sample data 
are multivariate normal. The performance of 
the ML classifier depends upon how well 
this assumption holds in reality. 

Points to Remember about the Maximum 
Likelihood Classifier 

• It must be kept firmly in mind that 
the ML classifier is a parametric 
statistical classifier, and its 
effectiveness depends on the class 
sample data being multivariate 
normal. 

• The training samples must be a good 
and faithful representation of all the 
samples. 

• The class covariance matrices must 
not be singular. The ML classifier 
crashes if it encounters a singular 
covariance matrix. 

• There must be very little overlap 
between classes. 

 
What is Texture? 
 
Researchers agree that texture is a spatial 
variation in brightness or tone from one 
pixel to the next within an image. However, 
there is no absolute or universal consensus 
as to how texture should be modeled or 
measured (Davies, 2005; Haralick, et al., 
1973; Haralick and Shanmugan, 1974; 
Parker, 1997; Richards and Jia, 2006).  
 Texture is not an attribute of a single 
point or pixel. Texture is a variation between 
or among several pixels in the neighborhood 
of a pixel. The texture filter computes a 
value based on variations in the 
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neighborhood pixel values. This value is 
written to the output target pixel. 

Methods 

The ESRI ArcGIS 9.x Maximum 
Likelihood Classifier Tool 

The ESRI Spatial Analyst Extension must be 
installed in order to perform classification in 
ArcGIS 9.x. ESRI ArcGIS 9.x provides only 
one kind of supervised classifier, the 
Maximum Likelihood Classification tool in 
the Spatial Analyst / Multivariate toolbox. It 
performs a pixel-by-pixel classification of a 
multilayer dataset.  

4

 Some of the Focal Statistics tools in 
Spatial Analyst may be used to perform 
limited extraction of context and texture 
information. ML classification in ArcGIS 
9.x is a two-step process (Figure 3). With 
the addition of some customized VBA code 
(the core of this project), much more can be 
done. 

 The first step is to use the Create 
Signatures tool, which takes the image raster 
bands as input. Figure 4 shows an RGB 
orthophoto of some agricultural land which 
includes a lake. The three bands, red, green, 
and blue are specified as inputs for the 
Create Signatures tool. Also required is a 
file, either a polygon vector file or a raster, 
which defines which areas are the training 
samples. The attributes of the polygons or 
pixels (depending on the file type) indicate 
the class assignment. Figure 5 shows an 
example of a file marking the training fields. 
 

 
 

 The names of the input layers and 
training field file are entered into the Create 
Signatures dialog (Figure 6). The attribute 
field is selectable (in the case of a vector 
training file). The name of the output file 
needs to be specified. Also, if an ML 
classification is desired, one must check the 
Compute covariance matrices checkbox. 
Otherwise, the classifier will behave as a 

                  
Figure 4. FSA Orthophoto of a Rural Scene. 
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Figure 5. Raster File Marking Training Areas. 

 
Figure 3. ML Classification in ArcGIS 9.x. 

 



 

Minimum Distance to Class Means 
classifier. 
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 The output of the Create Signatures 
tool is a signature file, having a “.gsg” 
extension, which is ESRI’s name for the 
statistical information connected with the 
training samples.  
 The signature file contains a mean 
vector (or centroid) and a covariance matrix 
for each class, which are computed from the 
training samples. An example of a signature 
file is shown in Table 1. 
 For each of the seven classes in the 
signature file (Table 1), there is a mean 
vector and a covariance matrix. The mean 
vector describes the centroid (or center of 
gravity) of the class in feature space, while 
the covariance matrix describes the shape of 
the class distribution. Since there are three 
layers, the feature space is three-
dimensional. Therefore, the mean vector has 
three elements, and the covariance matrix is 
a 3×3 matrix. 
 The second major step in 
classification (Figure 3) is the Maximum 
Likelihood Classification tool, which takes 

the image raster bands (red, green, and blue) 
as well as the signature file as inputs.  
 

 
Figure 6. The Create Signatures Dialog. 

Table 1. Signature File (*.GSG extension). 

# Signatures Produced by ClassSig from  
#    Class-Grid c:\grad_p~1\develo~1\textur~1\g_g_g3 
#    and Stack c:\grad_p~1\develo~1\textur~1\z_z_z2 
#    Number of selected grids 
/*           3 
#    Layer-Number    Grid-name 
/*           1       z_z_z2c1 
/*           2       z_z_z2c2 
/*           3       z_z_z2c3 
 
#  Type     Classes      Layers       Parametric Layers 
     1         7           3                  3 
# 
======================================================= 
#  Class ID     Number of Cells    Class Name 
        1             49968          
# Layers             1             2             3 
# Means     
                 36.49442      42.06434      55.47977 
# Covariance 
    1            31.39861      25.81174      26.44564 
    2            25.81174      26.72456      24.57453 
    3            26.44564      24.57453      26.12691 
# ----------------------------------------------------- 
#  Class ID     Number of Cells    Class Name 
        2             55353          
# Layers             1             2             3 
# Means     
                 68.11989      77.66493      78.84958 
# Covariance 
    1           669.31216     672.81481     659.58840 
    2           672.81481     686.66257     666.17543 
    3           659.58840     666.17543     657.70707 
# ----------------------------------------------------- 
#  Class ID     Number of Cells    Class Name 
        3              8186          
# Layers             1             2             3 
# Means     
                187.28769     185.37821     188.71696 
# Covariance 
    1           360.62987     365.95728     343.63416 
    2           365.95728     380.99781     351.61775 
    3           343.63416     351.61775     341.83887 
# ----------------------------------------------------- 
#  Class ID     Number of Cells    Class Name 
        4            100714          
# Layers             1             2             3 
# Means     
                104.70264     115.37721     108.02117 
# Covariance 
    1           226.54026     177.41603     176.99374 
    2           177.41603     161.81516     151.80360 
    3           176.99374     151.80360     150.89548 
# ----------------------------------------------------- 
#  Class ID     Number of Cells    Class Name 
        5             36061          
# Layers             1             2             3 
# Means     
                138.20612     134.79920     126.17437 
# Covariance 
    1           282.72032     229.04577     244.32651 
    2           229.04577     209.81378     214.96280 
    3           244.32651     214.96280     225.62384 
# ----------------------------------------------------- 
#  Class ID     Number of Cells    Class Name 
        6             22597          
# Layers             1             2             3 
# Means     
                125.98721     129.06519     121.07687 
# Covariance 
    1           873.85446     812.21016     819.62357 
    2           812.21016     775.81930     777.87519 
    3           819.62357     777.87519     784.89297 
# ----------------------------------------------------- 
#  Class ID     Number of Cells    Class Name 
        7              8139          
# Layers             1             2             3 
# Means     
                178.38088     177.58975     175.01941 
# Covariance 
    1          3802.93724    3692.17544    3645.04618 
    2          3692.17544    3599.42777    3558.13379 
    3          3645.04618    3558.13379    3544.59608 
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shown in Figure 7. A name needs to be 
specified in the dialog for the output rast
file. In this example, IMAGINE Image 
format was chosen by specifying the “.im
extension.  

pixels that do not seem to fit into any class. 
The Reject Fraction was set to zero, 
therefore forcing the classifier to make a 
decision no matter how poorly the pixel fi
into any class. The a priori probability 
setting was set to EQUAL for these 
experiments. It was also decided not 
the Output Confidence Raster feature. The 
result of the maximum likelihood 
classification is shown in Figure 8.
There is no way to verify the accurac
classification other than to use the training 
areas themselves, since “ground truth” for 
the rest of the image is not available. It was
decided to develop a tool in Visual Basic to 
perform error analysis as part of this project. 
The Create Error Matrix tool, will be 
discussed later on in this section. 
 

developed in both C#.NET (the 
Bhattacharyya Matrix tool) and V
is embedded in ArcGIS 9.x (the Thematic 
Classification Toolbar). It would be 
impossible to include all the details a
how these tools operate within the scope o
this paper. Please see Appendix for several 
ancillary documents written for those 
wanting more information. 

accessed via the Texture Tools drop-down 
menu on the Thematic Classification toolba
(Figure 9). Each texture filter takes a raster 
as input and creates one or more output 
images based on local texture measures. 

 
Figure 7. ML Classification Dialog. 

 
Figure 8. Result of ML Classification. 

 
Figure 9. Texture Tool Menu. 

 



 

Brief descriptions for each texture filter 
follow. 

Gaussian Smoother 
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This filter is a Gaussian-weighted moving 
average convolution mask. The size of the 
square window is four standard deviations of 
the Gaussian kernel. 

First Order Statistics 

This filter computes statistics of a square 
neighborhood around the input pixel. There 
are six statistics altogether: 
 

• Mean 
• Standard Deviation 
• Skewness 
• Kurtosis 
• Median 
• Range (Max minus Min) 

Second Order (GLCM) Statistics 

The Gray-Level Cooccurrence Matrix 
operators (also called Haralick operators) 
are based upon statistics calculated upon a 
two-way cooccurrence matrix (Haralick, et 
al., 1973; Haralick and Shanmugan, 1974). 
The statistical operators used here consist of 
the following operators:  
 

• Angular Second Moment 
• Contrast 
• Dissimilarity 
• Entropy 
• Inverse Difference Moment 
• Inverse Difference 
• Maximum Probability 

Gabor Filters 

Gabor filters are spatial frequency bandpass 
filters, and they have many applications in 
texture recognition matrix (Clausi and 
Jernigan, 2000; Idrissa and Acheroy, 2002; 

Manthalkar, et al., 2003). The Gabor kernel 
is a sine wave (or cosine wave) modulated 
by a Gaussian envelope (Figure 10). 

 

Circular Gabor Filter 

A moving circular Gabor mask is shown in 
Figure 11. This mask is sometimes called 
the Mexican Hat filter. 

 

Multidirectional Gabor Filter 

The multidirectional Gabor filter applies a 
directional Gabor filter at various orientation 
angles. For each orientation a sine and a 
cosine Gabor mask are applied, squared, and 
summed (Figure 12). 

 
Figure 10. One-dimensional Gabor Kernel. 

 
Figure 11. Circular Gabor Mask. 

 
Figure 12. Multidirectional Gabor Mask. 

 



 

Hurst Filter 

The Hurst filter calculates a Hurst 
coefficient for each input pixel based on a 
circular neighborhood. The Hurst coefficient 
is a measure of fractal dimension similar to 
that defined by Mandelbrot (1983). The 
Hurst coefficient is the slope of a regression 
line (Hurst plot, Figure 13) which plots the 
log distance from the central pixel versus the 
log range (max - min).  
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Laws Energy Filter 

The Laws Energy filters are integer valued 
convolution filters of sizes 3×3, 5×5, and 
7×7. The 3×3 masks are shown in Figure 14. 
The results of the convolutions are squared 
(giving energy) followed by a smoothing 
filter (Laws, 1980a; Laws, 1980b; Parker, 
1997). 
 

 

LBP / VAR filter 

The local binary pattern (LBP) filter and the 
variance (VAR) filter deal only with the 
eight immediate neighbors in this particular 
implementation (Figure 15). These filters 
were originally developed by the Machine 
Vision Group at the University of Oulu, 
Finland (Maenpaa and Pietikainen, 2005; 
Ojala, et al., 2002; Pietikainen, 2000). 
 

 

Other Custom Tools 

Other custom tools are on the Classification 
Tools pull-down menu and on the toolbar 
itself (Figure 16). 

The Create Error Matrix Tool 

The simplest measure of classification 
accuracy is the number of correct 
classifications divided by the total number 
of pixels. However, the breakdown of errors 
by category is desired, and this type of 
display is called an error matrix or confusion 
matrix (Campbell, 2002; Landgrebe, 2003; 
Richards and Jia, 2006). 

 
Figure 15. LBP Primitives. 

 
Figure 14. 3 x 3 Laws Filters Masks. 

 
Figure 13. Hurst Plot. 
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Figure 16. Classification Tool Menu. 

 



 

 One thematic raster is called the 
reference, and the other, the target. A 
reference pixel is assumed to be true, and if 
the corresponding target pixel matches it, it 
is said that the classification is correct, 
otherwise it is in error.  
 This custom tool was created for this 
very purpose. The classification matches and 
mismatches are cross-tabulated (Table 3). 
The reference classes are shown along the 
horizontal axis and vertical axis. Tallies 
along the main diagonal of the matrix are 
correct, and all off-diagonal tallies are 
errors. 
 The correct tallies by column divided 
by the column totals are called producer’s 
accuracy, and the correct tallies by row 
divided by the row totals are called user’s 
accuracy. The total correct divided by the 
overall total is the overall accuracy. 
 It is expected that a certain number 
of pixels will be classified correctly by 

random chance. Many statisticians consider
κ , or “kappa” to be a better figure of merit 
than overall accuracy (Congalton, 1991; 
Congalton, et al., 1983; Rosenfield and 
Fitzpatrick-Lins, 1986). Kappa, as a 
population parameter, is: 

(1.1) o c

c

p p
p

κ
−

=
−1

 

 op is the probability of observing a 
correct classification, and cp is the 
probability of a correct classification 
happening by chance. A sampled estimate 
for kappa is called kappa-hat ( ). κ̂
 The kappa-hat-variance tells how 
good that estimate is. The formula for the 
kappa-hat-variance is rather complicated; 
see Hudson and Ramm (1987). The Create 
Error Matrix Tool calculates all of the 
above, as well as a 95% confidence interval 
for kappa. 

Table 3. An Error Matrix. 

Class Legend     Reference = training.img      Target = rgb_lake.img 
----- ------ 
  1   lake 
  2   trees 
  3   road 
  4   field1 
  5   field2 
  6   orchard 
  7   building 
 
 Target          Reference Classes 
Classes       1       2       3       4       5       6       7 |  Totals  User's 
------- ------- ------- ------- ------- ------- ------- ------- |  ------  ------ 
      1   49288     304       0       0       0       0      26 |   49618   99.33% 
      2     674   51578       0    3492       0     104     595 |   56443   91.38% 
      3       0       3    7473       1       9      71     541 |    8098   92.28% 
      4       0    2383       0   82259      72    3266     183 |   88163   93.30% 
      5       0      11       0    3028   31691    5031     423 |   40184   78.86% 
      6       0     271      14   11187    3460   13386     650 |   28968   46.21% 
      7       6     803     699     747     829     739    5721 |    9544   59.94% 
------- ------- ------- ------- ------- ------- ------- ------- |  ------ 
 Totals   49968   55353    8186  100714   36061   22597    8139 |  281018 
Pducer's: 98.64%  93.18%  91.29%  81.68%  87.88%  59.24%  70.29%  
 
Total Pixels Compared = 281,018 
Correctly Classified  = 241,396 
 
Overall Accuracy = 85.90% 
Estimated Kappa-Hat = 0.8211 
Est. Kappa-Variance = 6.7930E-7 
95% Confidence Interval = [ 0.8195, 0.8228 ] 

 9



 

The Bhattacharyya Matrix Tool 

The Bhattacharyya Matrix tool (not on the 
Thematic Classification toolbar, but under 
ArcTools) takes an ESRI classification 
signature file and generates a cross-
tabulation matrix of statistical distances 
between the classes as typified by their 
signatures. The Bhattacharyya distance is 
the distance between two distributions in 
feature space. The formula for the B-
distance is: 
 

 (1.2)

-1
T 1 2

1 2 1 2

1 2

1 2

Σ + ΣD μ - μ μ - μ
2

1 Σ + Σ
2ln

Σ Σ

⎡ ⎤= ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
⎛ ⎞

⎡ ⎤⎜ ⎟⎣ ⎦
⎜ ⎟+
⎜ ⎟
⎜ ⎟
⎝ ⎠

1
8

1
2

 
 
 The μ variables are the centroids of 
the distributions and the Σ variables are the 
covariance matrices. The B-distance is used 
in the MultiSpec© software by Landgrebe 
and Biehl (1995), and is considered to be 
one of the best measures of class separation 
(Landgrebe, 2003; Richards and Jia, 2006). 
For an example of a B-matrix, see Table 4.  
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The Colorspace Conversion Tool 

The Colorspace Conversion tool allows one 
to extract the red, green, and blue layers 

from an RGB raster dataset. It also extracts 
hue, saturation, and value as separate layers. 

Show Raster Cell Values Tool 

This modal tool shows the pixel value at the 
cursor of the topmost active layer. For RGB 
datasets, the values of all three layers are 
shown. 

Autocorrelation Tools 

The two autocorrelation tools allow one to 
select an area of the image and create an 
autocorrelation plot of that selection. This 
can be used to help select the scale for 
applying texture filters. 

Miscellaneous Tools 

Additional utility tools are included in the 
Thematic Classification toolbar: 
 

• Extract Using Mask 
• Histogram Equalization 
• Compare Rasters 
• Convert Raster Type 
• General Help 

 
Table 4. Bhattacharyya Matrix. The General Help selection is really not a 

tool, but rather a set of Help dialogs that 
gives additional information beyond what is 
available with each software tool. 

Bhattacharyya matrix for ArcGIS signatures 
file: 
C:\Grad_Project\Development\TextureClassificati
on\rgb_lake.gsg 
 
Type              = 1 
Number of Classes = 7 
Number of Layers  = 3 
Parameter Layers  = 3 
 
Class    1      2      3      4      5      6    
-----  ---    ---    ---    ---    ---    ---    
  2    3.43  
  3   16.47   5.53  
  4   13.35   1.56   4.95  
  5   37.22   6.64   4.60   1.62  
  6   20.12   3.17   2.69   0.61   0.51  
  7    4.25   1.70   0.62   1.60   1.34   0.83  
 

Datasets 

VisTex Mosaic 

The Create Texture Mosaic tool creates a 
mosaic from a collection of tiles which were 
originally obtained from the VisTex 
database at the MIT Media Lab (MIT, 
1995). A 12-tile RGB mosaic was created 
from that tool (Figure 17). 
 The thematic map for the training 
areas is shown in Figure 18 and the ground 
truth thematic map is shown in Figure 19. 
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Itasca County Forest Dataset 

There are two datasets of the same area in 
Itasca County, Minnesota: RGB and color 
IR. The area of interest consists of 96 square 
kilometers of mixed woodland (Figure 20). 
The RGB dataset is an FSA orthophoto 
(9/1/2004), at one meter resolution. The 
color IR orthophoto (10/5/2003) was 
obtained from the Minnesota DNR, and has 
a one meter resolution.  
 Various stands within this area have 
been ground classified by professional 
foresters. The ground truth classification 
information is in the form of a shapefile 
from the MN DNR, which is shown in 
Figure 21. 

 
Figure 19. 12-Tile Mosaic “Ground Truth”. 

 
Figure 18. 12-Tile Mosaic Training Areas. 

 
Figure 17. 12-Tile RGB Mosaic. 

 

Figure 20. Itasca County Forest Data. 

 
Figure 21. Itasca County Forest Ground Truth. 

 



 

Alaska Wetland Data 
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The Alaska Wetland dataset (Figure 22) was 
obtained from Geospatial Services, St. 
Mary’s University, Winona, MN (GSS). The 
entire dataset has been classified by 
professional photointerpreters at GSS into 
several wetland main types (Figure 23):  
 

• Estuarine and Marine Wetland 
• Freshwater Emergent Wetland 
• Freshwater Pond 
• Lake 

 
 The classification data comes in the 
form of a polygon feature dataset. Therefore, 
the entire feature dataset can be used as 
“ground truth” to check the accuracy of our 
classification. The orthophoto has been 
clipped to a rectangular area of interest 
consisting of 125 square kilometers. The cell 
size is 2.5 meters square, giving a raster of 
4000 columns by 5000 rows making 
2,000,000 pixels altogether. 

Results 

Experiment #1: VisTex Mosaic  
Figure 22. Alaska Wetland Data. Accuracy Performance 

The VisTex tile mosaic classification 
accuracy results are summarized in Figure 
24. Because each of these classifications 
employs different numbers of layers, any 
kind of a direct comparison is somewhat 
misleading. For example, the Hurst filter 
produces only one additional layer of 
information in addition to red, green, and 
blue, making 4 altogether. As a result, the 
classification accuracy based upon the Hurst 
filter is only slightly better than RGB alone. 
 The 1st order statistics outperformed 
all the other methods, which was 
unexpected. That was followed by the Laws 
Energy Filter, followed by the 2nd order 

 
Figure 23. Alaska Wetland Data Ground Truth. 

 



 

(GLCM) statistics, and the Multidirectional 
Gabor filter, in descending order. 
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Speed Performance 

The details of filter performance testing are 
these: 
 

• With the exception of the LBP / 
VAR filter, the convolution kernels 
for all the filters were set to 17×17. 

• For the multidirectional Gabor filter, 
four orientations were used. 

• Each of the Laws filters used a 
17×17 smoothing filter after the 
primary convolution. 

 
 The speed measurements of the 
various filters are summarized in table 5. 
When comparing speed with classification 
accuracy, it is apparent that the most 
accurate tools are not necessarily the fastest, 
or vice-versa. The first order statistics were 
the best performers in accuracy, but were 

relatively slow. The primary reason for its 
slow performance had to do with computing 
the order statistics: median and range. The 
software uses the Quicksort algorithm, 
which has a time complexity of O(n log n), 
but is nonetheless slower than computing 
statistical moments, which are O(n). 

 The Laws Energy filters came in 2nd 
place in the accuracy test, but were 
reasonable in terms of speed. The main 
limitation on speed for the Laws Energy 
filters is the size of the smoothing filter, not 
the primary convolution kernel itself. 

Table 5. Summary of Filter Speed Tests. 

Filter Name No. of Total 
seconds 

Seconds 

 The 2nd order (GLCM or Haralick) 
statistics came in 3rd place in the accuracy 
test, but were also reasonable in speed, 
although not as speedy as the Laws filters. 
The multidirectional Gabor filters are very 
competitive in accuracy, but were very poor 
performers in regard to speed. The reason 
for this was because the multidirectional 
Gabor needed to compute a convolution 
kernel for both sine and cosine waves in 
multiple orientations. 
 Balancing accuracy and speed 
considerations, it appears that the best 
choices are the Laws Energy filters and the 
2nd order (GLCM) statistics. 

Experiment #2: Itasca County Forest Data, 
All Categories 

It was evident from the outset that the 
custom software tools were not able to 

layers per layer 
LBP / VAR 2 4.97 2.49 
Circular Gabor 4 74.55 18.64 
Laws Energy 3 x 3  1 19.19 19.19 
Gaussian Smoother 1 19.36 19.36 
Laws Energy 5 x 5  1 20.23 20.23 
Laws Energy 7 x 7  1 22.02 22.02 
Hurst 1 30.36 30.36 
GLCM Statistics 7 230.83 32.98 
1st Order Statistics 6 593.41 98.90 
Multidirect. Gabor 4 792.7 198.18 

 
Figure 24. VisTex Mosaic Classification Results. 

 



 

handle a raster dataset as large as 284 
megabytes. The tools threw “out of 
memory” exceptions. Thus, the decision was 
made to analyze a somewhat smaller section 
measuring 1600 × 2500 meters, resulting in 
an 11.8 megabyte file (Figure 25). 
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Principal Components Analysis 

Before undergoing classification, the dataset 
was analyzed using the Principal 
Components Analysis tool in ArcTools. It 
was discovered that the three bands, red, 
green, and blue, are very highly correlated 
with each other (Table 6). 

 
An inspection of the eigenvectors reveals 
that the red, green, and blue bands make a 
nearly equal contribution to the first 
principal component, which can be 
considered to be total image brightness. 
Therefore, the strategy of deriving texture 
information from the value (brightness) of 
the pixels is considered to be valid, as 
suggested by Maenpaa and Pietikainen 
(2004). Principal components analysis was 

also performed on the color IR dataset, and 
the result was very similar to Table 6. 
 It was decided to combine the color 
IR dataset (IR, red, and green layers) with 
the blue layer from the RGB dataset. 
Principal component analysis of the four 
layers yielded the results in Table 7. 

 

IRGB-only Classification 

Table 8 illustrates the poor accuracy of the 
IRGB-only classification. This is to be 
expected, because of the granularity of 
forest images. Each tree casts a shadow, so a 
pixel-by-pixel classification scheme is 
bound to fail.  

Scale 

In Figure 26, it is evident that the brightness 
varies over the course of several meters, but 
the variance in brightness pattern varies 
from one stand of trees to another. Note that 
if the imaging device had been the Landsat 
TM+ instrument, the pixel resolution would 
be 30 meters, and the variance seen here 
would be lost. In our dataset the spatial 
resolution is one meter, and the crowns of 
trees are several meters wide. It is precisely 

Table 7. Variance of the Itasca IRGB (4-layer) 
Dataset. 

Princ. Comp.  1  2  3  4 

Eigenvalues:  8268.59  837.38  302.01  8.42 
% Variance:  87.81%  8.89%  3.21%  0.09% 

Eigenvectors        
IR  0.652  ‐0.128  0.735  0.135 

red  0.558  ‐0.014  ‐0.361  ‐0.747 
green  0.504  ‐0.001  ‐0.568  0.651 
blue  0.092  0.992  0.089  0.008 

Table 6. Variance of the Itasca RGB Dataset. 

Princ. Comp.:  1  2  3  Total 

Eigenvalues:  3113.36  24.64  12.49  3150.49 

%  Variance:  98.82%  0.78%  0.40%  100.00% 

Eigenvectors        

red  0.607  ‐0.412  ‐0.680   

green  0.591  ‐0.337  0.732   
blue  0.531  0.846  ‐0.039 

 
Figure 25. A smaller (1600 x 2500) area of 
interest. 

Table 8. Classification Results of IRGB Layers. 

Overall Accuracy = 19.86% 
Estimated Kappa-Hat = 0.1251 
Est. Kappa-Variance = 7.5919E-8 
95% Confidence Interval = [ 0.1245, 
0.1256 ] 

 



 

this spatial variance of brightness between 
one stand of trees and another that is the 
basis for our expectation that texture 
measurement should improve land cover 
classification. 
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 It was decided that the texture filters 
should be set so that the raster is subsampled 
by a factor of 4 before filtering and 
supersampled by 4 afterwards to restore the 
raster to full scale. 

Registration 

A second reason for poor classifier 
performance could be that there may be 
alignment or registration problems between 
the ground truth dataset and the image 
(Figure 27). The green double-headed arrow 
shows a displacement of about 50 meters 
between the stand of trees and its boundary 
in the ground truth layer. 

 

Categories 

In experiment #2, the results of using four 
texture methods were compared with the 
results of using IRGB-only. Categories used 
for training areas are shown in Table 9, with 
the training areas shown in Figure 28. 

 

 The four texture filtering methods 
that yielded the greatest accuracy in the 
VisTex mosaic experiment were used 
(Figure 29). It is apparent that the 1st order 
statistics and the Laws Energy filter provide 
much more accuracy than IRGB alone. 
 Generally speaking, the ML 
classifier has a hard time distinguishing 
among the various species of trees. 
 
Experiment #3: Itasca County Forest Data, 
Collapsed Categories 

The same filters were used as in experiment 
#2. The rasters were subsampled in the same 
fashion as well. But experiment #3 differs in 

Table 9. Experiment #2 Landcover Categories. 

Category Code Description 
Hardwood 1 ash 

“ 12 aspen 
“ 13 birch 

Conifers 52 red pine 
“ 53 jack pine 
“ 62 balsam fir 
“ 71 black spruce  
“ 72 tamarack 

Non-productive 75 stagnant spruce 
Non-forest 85 lowland brush  

“ 96 permanent water 

 
Figure 27. Possible Registration Problem. 

 
Figure 26. Autocorrelation analysis of forest. 

 
Figure 28. Experiment #2: Training Areas. 

 



 

that the hardwood and conifer categories 
were collapsed (Table 10 and Figure 30). 
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 It appears that the classifier can 
distinguish hardwood from conifer much 
better than it can discriminate between 
individual species, like red pine from jack 
pine, for example. The front runner 
performer by far is the Laws Energy filter 

with an overall accuracy of 56.1% and a 
kappa-hat of 32.58%. 

Experiment #4: Alaska Wetland Dataset, 
Full Categories 

Principal Components Analysis 

As was done with the Itasca forest dataset, a 
principal components analysis of the Alaska 
wetland dataset was performed first (Table 
11). Unlike the Itasca dataset, the first 
principal component, which carried over 
90% of the variance, was heavily weighted 
in the red band by over 80%. So, rather than 
using the value band derived from an HSV 
color transform, it was decided to use the 

 
Figure 30. Experiment #3 Training Areas. 

Table 10. Experiment #3 - Collapsed Landcover 
Categories. 

Category Code 
Hardwood 1 
Conifers 2 
Stagnant 3 

Brush 4 
Permanent Water 5 

Table 11. Variance of the Alaska RGB Dataset. 

Prin. Comp.:  1  2  3  Total 

Eigenvalues:  5082.61  511.90  26.50  5621.02 

% Variance:  90.42%  9.11%  0.47%  100.00% 

Eigenvectors        

red  0.816  ‐0.557  0.156   

green  0.478  0.499  ‐0.723   
blue 0.325 0.664  0.673 

 
Figure 29. Experiment #2 Classification Results. 

 
Figure 31. Experiment #3 Classification Results. 

 



 

first principal component as the basis for 
texture filtering. Table 12. Alaska Dataset Landcover Types. 
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Scale 

The next task was to perform an 
autocorrelation on the 1st principal 
component at various places in the image. 
Based upon this test it was decided that the 
1st principal component should be 
subsampled by a factor of 10 before 
applying texture filters, and afterwards 
supersampled by 10 to bring the result back 
to full scale.  

Full Categories 

Table 12 show the full set of categories 
used. As with the Itasca dataset, the four 
texture filters associated with the most 
accurate classifications in previous 
experiments were used. The results are 
displayed in Figure 32. 
 It appears that first order statistics 
yielded the best classification at 50.51% 
overall accuracy with a kappa-hat of 
41.81%. The Laws Energy filter came in 
second with 44.66% overall accuracy and a 
kappa-hat of 38.42%. Apparently, the 
classifier performed much better with full 
Alaska wetland categories than with the 
Itasca forestry dataset with full arboreal 
species categories. 

Experiment #5: Alaska Wetland Dataset 
with Collapsed Categories 

The same experiments were run with four 
collapsed categories of lake, freshwater 
emergent wetland, and freshwater pond. The 
best classification results were obtain with 
the red, green, and blue bands only, yielding 
90.55% overall accuracy and kappa-hat of 
79.88%. Classification involving any of the 
texture filters yielded poorer results than 
RGB alone (Figure 33). This was quite 
unexpected.  

Discussion 

Experiment #1: VisTex Mosaic 

A step-by-step description of the 
classification performed here is given in the 
ancillary document Texture Classification 
Tools for ArcGIS 9.3 (Rohland, 2008a) . 

Wetland_Type Code Attribute 
Lake 5 L1UBH 

“ 6 L2EM2/UBH 
“ 7 L2EM2H 
“ 8 L2USE 

Freshwater Emergent 
Wetland 9 PEM1/2F 

“ 10 PEM1/SS1B 
“ 11 PEM1/SS1E 
“ 12 PEM1/SS1F 
“ 13 PEM1/UBF 
“ 14 PEM1/UBH 
“ 15 PEM1B 
“ 16 PEM1E 
“ 17 PEM1F 
“ 18 PEM1H 
“ 19 PEM2/1F 
“  20 PEM2/1H 
“ 21 PEM2H 

Freshwater Pond 22 PUB/EM1H 
“ 23 PUBH 

 
Figure 32. Experiment #4 Classification Results. 
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This was the only experiment performed 
with a texture mosaic. While the software 
tools have the ability to perform texture 
filtering at scales coarser than 1:1, this 
particular feature was not used. It is very 
possible that better classification results 
could have been obtained with a 2:1 or 
greater scaling. 
 In this project the results obtained 
from one section of the project were used to 
inform choices made for sections following. 
Because the results obtained from the 
VisTex Mosaic showed that the Laws 
Energy filter and the GLCM statistics 
offered the best balance of accuracy and 
speed performance, these tools were chosen 
for analyzing the Itasca and Alaska datasets. 
First order statistics and Multidirectional 
Gabor filters were also used for later 
experiments even though they were slow. 

Experiments 2 and 3: Itasca County Forest 
Dataset 

The inability of the custom software tools to 
handle the entire dataset consisting of 9600 
× 10,000 = 96,000,000 pixels reveals a 
critical weakness of the software tools at this 

stage of development. The reason for the 
“out of memory” error is that the tools 
require the entire dataset to be buffered in 
RAM at once, rather than handling it 
piecemeal. For the time being, we will have 
to deal with the data in smaller pieces. A 
section of size 2500 × 1600 = 4,000,000 
pixels was chosen. 
 It was noted that classification 
accuracy improved when the training area 
categories were collapsed so that all 
hardwoods were grouped together, and all 
conifers were grouped together. Apparently, 
species of trees cannot be reliably identified 
by texture plus near IR plus RGB. Only 
when the trees are collapsed into hardwoods 
and conifers do accuracies start to approach 
50%. It is possible that there might not be a 
strong correlation between arboreal species 
and texture. 

 
Figure 33. Experiment #5 Classification Results. 

Experiments 4 and 5: Alaska Wetland Data 

Apparently the Alaska wetland data was 
photographed during the Arctic summer. 
The dataset did not come with metadata, so 
the date of acquisition is unknown. This area 
near the shore of the Arctic Ocean appears 
to be much more than just a frozen 
wasteland. Texture based classification fares 
much better here. With 19 categories of 
wetland / lake / pond the overall accuracies 
approach 50%, and in the case of 1st order 
statistics, exceed it.  
 In experiment #5, with three 
collapsed categories, the classifier overall 
accuracy performance exceeded 90% 
without texture filtering and without 
subsampling. The use of texture filtering 
actually worsened classifier performance. 
The researcher is unable to offer an 
explanation for this unexpected result. 

Statistical Significance 

To demonstrate the statistical significance 
that the employment of a certain texture 

 



 

filter improves the accuracy of ML 
classification is quite easy because of the 
very narrow confidence intervals for kappa-
hat. An example follows: 
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 Compare the RGB-only data with the 
Gabor filtered data in tables 13 and 14: 
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 …which is significant at any level 
one would like to pick. 

Summary 

Finding statistical significance is extremely 
easy because the kappa-hat-variances are so 
small, and that is a result of the N (number 
of pixels) being so large. But the issue of 
statistical significance is not the same as the 
issue of usefulness. Is it worth the time and 
trouble to employ texture filters in 
conjunction with the ML classifier in ESRI 
ArcGIS when the overall accuracy is about 
50% at best? Let the reader judge. 

 Perhaps an ML pixel classifier is not 
the appropriate instrument for landcover 
segmentation, at least not in the problem 
domains tried here. What this study does 
demonstrate is that texture filters can be 
used to significantly improve the accuracy 
of an ML pixel classifier when used with 
real-world data. 

Table 13. Classification Accuracy of Alaska 
Wetland, RGB-only. 

Suggestions for Future Research and 
Development 

Overall Accuracy = 33.28% 
Estimated Kappa-Hat = 0.2563 
Est. Kappa-Variance = 7.5516E-9 
95% Confidence Interval = [ 0.2561, 
0.2565 ] 

The software tools (texture filters and all) in 
their present form suffice as a proof of 
concept. However, before they could be 
used in a full production setting or be sold 
commercially, several things would have to 
happen: Table 14. Classification Accuracy of Alaska 

Wetland, Multidirectional Gabor Filter.  
• They need to handle large datasets. 

In their present form, the software 
tools buffer the entire raster dataset 
in memory, as well as allocate 
memory for an entire output data 
array. This places a severe restriction 
on the size of datasets that can be 
processed. ESRI raster tools 
apparently work on datasets 
piecemeal. Our software tools would 
have to do likewise. It is more 
complicated to do things this way, 
and there is slightly more overhead. 

Overall Accuracy = 40.75% 
Estimated Kappa-Hat = 0.3212 
Est. Kappa-Variance = 1.0004E-8 
95% Confidence Interval = [ 0.3210, 
0.3214 ] 

• The tools must have an ArcTools 
interface. Porting the code to 
C#.NET would allow us to build an 
ArcTools style interface. This would 
be advantageous because one could 
set up scripts in Python or one could 
construct models in ModelBuilder 
resulting in assembly line processing 
for large datasets and less tedium for 
the human user. 

• The tools must be able to handle 
geodatabase data, both feature 
classes and raster datasets. This 
requires rewriting some of the data 
input/output routines and a little 

 



 

extra overhead handling cells 
containing “NoData.” 

• One could build a new classifier. The 
ML classifier is not the highest 
performing classifier for landcover 
classification (Rohland, 2008b; Tso 
and Mather, 2001). For classes that 
have a multimodal distribution, a 
non-parametric Parzen window 
classifier could be used, for example. 
Higher-level segmentation could be 
performed by using a Hidden 
Markov Model and simulated 
annealing (Tso and Mather, 2001). 
There are many approaches to 
classification that could be tried as 
an adjunct to ESRI ArcGIS imaging. 
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Appendix: Ancillary Documents 

Details of texture based classification and 
the particular software tools used here can 
be found in the following ancillary 
documents: 
 

• Texture Classification Tools for 
ESRI ArcGIS 9.3: A Technical 
Walkthrough: “how-to” information 
about the software tools described in 
this study (Rohland, 2008a). 

• An Overview of Classification 
Methods for Remote Sensing: 
information on theory and issues 
related to classification (Rohland, 
2008b). 

• Texture Classification Tools Help 
Dialogs: an emphasis on the actual 
methods and formulas used in each 
software tool (Rohland, 2008c). 
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