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Abstract 
 
Fragmentation analysis of the Whitewater watershed, in southeast Minnessota, revealed 4 
structural measures of grass-shrub habitat that were significant predictors of sensitive 
species population densities.  Models were developed using simple linear regression and 
further refined to incorporate spatial autocorrelation using a Moran’s test.  Significant 
variables were divided into a five class ordinal model based on Jenks Optimization 
Method.  Ordinal values were summed to determine an overall measure of subwatershed 
restoration potential.  Results suggest that grass-shrub habitat should be restored in 0.6 ac 
patches equally dispersed about the landscape to optimize sensitive species densities. 
     
Introduction 
 
Geographic Information System (GIS) 
technology is becoming an important 
tool for holistic watershed management.  
A GIS can show what, where and even 
how restoration efforts should be 
focused.  A GIS increases efficiency by 
giving land managers tools to answer 
difficult land management questions.  
This efficiency results in quicker 
implementation of management plans 
that can be based on quantifiable data.   

Holistic watershed management 
is an adaptive ecosystem-based approach 
to resource management.  It focuses on 
improving the health of the ecosystem as 
measured by the diversity of species the 
system supports.  This approach is best 
carried out by those who have an interest 
in the system.  Ideally it is a group of 
concerned citizens who form watershed 
partnerships to set goals, identify needs, 

pool resources and team with state and 
federal agencies for technical assistance.  
This is the concept behind the 
Whitewater Watershed Partnership 
(WWP). 

The WWP was formed to 
improve management throughout the 
Whitewater watershed.  The WWP has 
identified habitat fragmentation, 
flooding, sedimentation and nutrient 
loading as threats to biodiversity in the 
watershed.  This project in cooperation 
with the WWP attempts to answer what, 
where and how restoration efforts should 
be focused to enhance biodiversity in the 
Whitewater watershed based on GIS and 
statistical analysis. 

The objectives of this study are 
twofold.  First, determine if habitat 
structure and sensitive species presence 
can be modeled in the Whitewater 
watershed.  Second, locate high potential 
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restoration areas at the subwatershed 
scale. 

Study Area 
 
The Whitewater watershed extends from 
near Rochester, Minnesota to the 
Weaver Bottoms, near the town of 
Weaver, where it eventually joins the 
Mississippi River (Figure 1).  The 
characteristics of the Whitewater 
watershed are typical of the Driftless 
region (Hawkins 1998).  Sometimes 
called the Blufflands region, the 
Driftless region is a zone of habitat 
transition from Eastern Deciduous Forest 
to Western Cornbelt which was 
historically tall grass prairie (Omerinik 
1987, 1995).  The 83,000 ha that are the 
Whitewater watershed change distinctly 
from the headwaters to the outlet.  The 
gently sloping headwaters of the 
watershed, once tall grass prairie, are 
heavily utilized by agricultural practices 
ranging from family dairy farms to 
industrial cash crop operations.  

Approximately midway through 
the watershed the topography changes 
dramatically.  Steep bluff hillsides are 
mostly forested by mast producing 
hardwoods and the connectivity of the 
forest is occasionally broken by 

limestone outcroppings.  The bases of 
these bluffs mark the start of the lower 
portion of the watershed.  A low gradient 
and an expansive flood plain also 
characterize the lower watershed.  

The habitat of the lower 
watershed is a matrix of wetland, prairie 
and forest with some intermixing on 
agricultural lands.  Because this 
watershed is located in an area of 
transition it has habitat characteristics of 
both the Driftless and the Western 
Cornbelt regions.  It has been reasoned 
that more complex habitats offer a 
greater number of potential niches and 
therefore should support a greater 
variety of species (MacArthur et al. 
1962).   In the Whitewater watershed, 
this increase in habitat equates to an 
increase in species as evidenced in the 
Natural Heritage and Nongame Research 
Program (NHP) sensitive species data.  
According to NHP data, the Whitewater 
watershed contains at least six species 
listed on Minnesota’s endangered 
species list.  Another nine species found 
in the watershed are considered 
threatened. 

Assembly of GIS 
 
The first step in this project was building 
a GIS for the Whitewater Watershed.  
Some data sets, like watershed 
boundaries, already existed and only 
needed to be converted into a common 
coordinate system.  This project used 
Universal Transverse Mercator (UTM) 
Zone 15;  North American Datum 1983 
(NAD83).  Other data sets, such as sub-
watershed boundaries, were delineated 
on 1:24,000 scale United States 
Geologic Survey (USGS) topographic 
maps and hand digitized using ArcInfo 
software (ESRI 1992 c).  Digital 
elevation model (DEM) data were Figure  1. Location of study area 
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obtained from USGS and converted 
from Spatial Data Transfer System 
(SDTS) format to ESRI grid coverage 
format.  These grids were ultimately 
mosaiced into one data layer.  Additional 
data sets were provided by the Natural 
Resource Conservation Service (NRCS), 
the Minnesota Department of Natural 
Resources (MNDNR), Environmental 
Protection Agency (EPA), and 
Minnesota Department of Transportation 
(MNDOT).   

The final GIS was extensive and 
consisted of the following: 

• land cover/land use  
• ownership  
• hydrography  
• elevation  
• wetland 
• feed lots 
• stream monitoring stations  
• transportation 
• political boundaries  
• protected areas  
• NHP sensitive species point data.  
  

The analysis herein described 
does not use all of the GIS data 
developed for the WWP but I believe it 
is important to inform others that most 
of the data is available from the current 
Whitewater watershed GIS coordinator 
(John Cole– Whitewater WMA Rt.-2 
Box 333 Altura MN 55910).       
 
Methods 
 
The land cover data for this study was 
derived via aerial photo interpretation 
and available at a scale of approximately 
1:5,000.  The available ecoregion data 
was much coarser and was available at 
an approximate scale of 1:100,000.  
Scale differences meant that analysis at 
the ecoregion level would not field much 
information.  Instead I focused analysis 

at the subwatershed scale.  Comparison 
by subwatersheds offered a repeatable 
analysis frame with somewhat static 
physical boundaries for future work in 
the Whitewater watershed.     

Sensitive species data 
 
The fundamental assumption of 
ecosystem management is that health of 
an ecosystem can be measured by the 
diversity of the organisms found using 
that ecosystem.  While accepted in 
theory it is very difficult to measure in 
nature.  Rather than attempting to 
quantify every organism from bacteria to 
mammals within an ecosystem, a more 
common practice among land managers 
is to look for indicator species.  Indicator 
species are defined as a plant or animal 
species related to a particular kind of 
environment. Its presence indicates that 
specific habitat conditions are also 
present (USDA 2000).  Indicator species 
are generally sensitive to certain 
environmental factors.  In practice 
sensitive species are generally indicators 
of anthropogenic disturbances like land 
use changes and pollution.  

For this analysis, I make the 
broad assumption that the plant and 
animal species contained in the NHP 
sensitive species database can be used as 
indicators of ecosystem health within the 
Whitewater watershed.  I use the overall 
abundance of sensitive species 
observations rather than diversity of 
species as an indicator of subwatershed 
health.  These assumptions were made 
because sensitive species have low 
populations and this methodology based 
on NHP sensitive species observations, 
allows quantitative analysis.  

Sensitive species data development 
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A key data set used in this analysis is the 
database of sensitive species site 
locations compiled by the NHP.  It 
contains 137 observations for animal 
species and 248 observations for plant 
species throughout the entire watershed.  
NHP point data are not available for 
public use, and I have summarized data 
by subwatershed for display and 
quantitative analysis.  

The NHP data set has many 
shortcomings, the most significant being 
the data only depict locations for which 
species are present.  This experimental 
design creates issues of bias such as 
search effort, travel patterns and site 
accessibility which all effect the 
randomness associated with these data.  
It is important to know which locations 
were studied and what was found at 
those locations.  For locations with no 
data we can only wonder if species exist.  
Knowledge of sampling locations 
combined with presence-absence data 
would be far more helpful in 
determining biologic explanations for 
species locations.  Many experimental 
designs such as a random block 
sampling provide more informative and 
less bias data.  With the NHP data set an 
analyst has little alternative but to 
summarize observations by area and 
create a density.  Analysis by density 
essentially averages out small biological 
variations by assuming that observations 
are randomly scattered within 
subwatersheds.   

a b
 

Figure 2.  Distribution of population density data with (a) 
and without (b) log treatment applied.  Headings an-ps-ncl 
and logan-ps-ncl represent the database attribute names for 
the untreated and log treated summation of plant and 
animal observations divided by class area. 

Sensitive species density data are 
not normally distributed for the entire 
watershed.  After experimenting with 
square root, exponential and logarithmic 
transformations, a log transformation 
was found to eliminate the most skew in 
these density data.  The original 
sensitive species density data and log- 

treated density data distributions can be 
seen in Figure 2.   

Building the GIS 
 
Fragstats software was used to analyze 
1996 land cover data (McGarigal and 
Marks 1994).  Fragstats allows 
quantitative comparisons of the patch, 
class and landscape structural makeup of 
subwatersheds.  Structure is the spatial 
relationships among the distinctive 
ecosystems or “elements” present—
more specifically, the distribution of 
energy, materials and species in relation 
to the sizes, shapes, numbers, kinds and 
configurations of the ecosystems 
(Foreman and Godron 1986).  Fragstats 
offers a quantifiable way to compare 
subwatershed structure within the 
Whitewater watershed.  My analysis 
utilized the raster version of Fragstats 
because it offers the most versatility in 
processing and analysis.   

Fragstats required several 
modifications to the land cover input 
data.  I used ESRI ArcInfo software 
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(ESRI 1992 c) to prepare the GIS data 
for Fragstats analysis as follows. 

The first processing step was to 
simplify land cover data to seven 
classes.  This simplification was done 
because Fragstats could not process the 
complexity of 17 classes.   

Simplification was done using 
ArcInfo and look up tables to collapse 
the 1996 land cover data into seven 
classes.  The ArcInfo “eliminate” 
command was used to remove sliver 
polygons that were less 0.5 ac in size.  
The keepedge option was used to 
preserve coverage boundary polygons.   

Proper calculation of edge 
indices requires data for an area larger 
than the evaluation unit.  For the WWP 
work I “clipped” the landcover data to a 
distance of 500 meters beyond the actual 
watershed boundary.  I then used the 
ArcInfo “union” command to combine 
land cover data with my subwatershed 
data layer.  This created a landcover 
dataset that contained attributes from my 
subwatershed data set for subsequent 
data processing and analysis.  This 
concluded the hands-on portion of data 
development. 

A macro was developed using 
ESRI Arc Macro Language (AML) 
(ESRI 1992 a) that looped through a 
series of data processing steps for each 
of the 50 subwatersheds.  The AML 
repeated the “buffer” and “eliminate” 
operations explained above and 
performed a series of attribute operations 
to calculate background data to negative 
values.  The final processing operation 
was conversion of landcover data from a 
vector to raster format.  I used a 5 m cell 
size to maximize data resolution.  
Background values were calculated to 
negative values and no data values were 
calculated to a –99 value as required by 

Fragstats software (McGarigal and 
Marks 1994). 

Processing 
 
The raster version of Fragstats needs 
several parameters at run time.  A 
distance of 50 m was established for 
core area determination for two reasons.  
First, this value was often encountered in 
literature.  Second, the 50 m value 
ensured that any core area in the 
landscape would be slightly larger than 
the 0.5 ac minimum patch size of my 
land cover data.    

The edge weighting option was 
not used because this analysis focuses on 
surface strata.  I chose to export 
landscape, class and patch level statistics 
to ensure scale relevant data for analysis.  
The resulting files were assembled into a 
database.  Spatial data analysis used 
ERSI ArcView software (ESRI 1992 b).  
Statistical analysis used JMP software 
(JMP 2000).  Geostatistical processing 
used SPlus software (SPlus 1998).  

Exploratory data analysis 
 
Each run of Fragstats produced data for 
approximately 50 landscape level 
metrics.  The class level Fragstats 
generates a set of 40 metrics for each 
landcover class found in each 
subwatershed.  Patch level data were 
available but not used in this project.  
Analysis of patch level data could be of 
aid to Whitewater watershed restoration 
planners.   

Data exploration focused on 
determining which Fragstat variables 
had the greatest influence on sensitive 
species population densities.  The 
majority of the literature I obtained 
focused analysis at the landscape level 
and I began there.  Using log 
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transformed sensitive species population 
density values as the independant 
variable, I used linear regression 
modeling for all continuous valued 
landscape and class level Fragstats 
metrics in the database.  I used JMP 
software (JMP 2000) for simple linear 
regression modeling.  

Spatial Autocorrelation 
 
Classic statistical methods are based on 
the fundamental assumption the data are 
randomly and normally distributed.  This 
assumption rarely holds true in nature.  
The classic bell curve of data 
distribution is often skewed as we see in 
Figure 2a.  Spatial autocorrelation is 
commonly used to explain non-normal 
distribution in spatial data.   

Spatial autocorrelation can 
broadly be defined as a property of 
mapped data that exhibit a pattern 
(Upton and Fingelton 1985).  A 
qualitative assessment spatial 
autocorrelation can be quickly 
determined by visual inspection of 
mapped data.   

Quantitative determination of 
spatial autocorrelation influence is more 
complex. Spatial statistical methods are 
built on the fundamental assumption that 
data which are close in physical distance 
are more similar than those data which 
are more distant.   

Several statistical packages now 
interface with GIS to aid in analysis of 
spatial autocorrelation.  For this project I 
used SPlus Spatial Statistics Extension 
(Splus 1998) in conjunction with 
ArcView 3.2 (ESRI 1996 b) GIS 
software.   

Visual analysis of the WWP 
Fragstat indices found patterns of data 
values indicating potential presence of 
spatial autocorrelation.  Quantitative 

analysis of autocorrelation influence was 
explored by using a contiguous neighbor 
matrix as a weighting function for a 
Moran's test (Moran 1948).  A Moran’s 
test has the null hypothesis of no spatial 
autocorrelation (Equation 1).  Upton and 
Fingleton (1985) suggest that it is 
sometimes easier to understand spatial 
autocorrelation by understanding where 
it does not exist. 

Incorporation of spatial influence 
in a regression model can improve the 
predictive powers of that model.  If 
spatial autocorrelation is found to be 
present in a dataset it can be accounted 
for in a spatial linear regression model 
(SLM).  A SLM accounts for 
unexplained variance in the non-spatial 
model by incorporating the information 
present in the Moran’s test during 
regression.   

   
Equation 1. 
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Where:  
Wij is neighbor matrix 
n is total number of polygons. 
i current polygon 
j is neighbor polygon 

 
   

Spatial Ranking of Watersheds: 
 
The final goal of this project was to 
determine where to focus restoration 
efforts in the watershed.  To answer the 
question I used ArcView’s natural 
breaks data classification to create an 
ordinal score per evaluation unit for each 
WWP Fragstat variable that was found 
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to be significant predictors of NHP 
sensitive species population densities.  
The natural breaks classification system 
is based on Jenk’s Optimization Method 
which uses statistical standards of 
deviation to group data (Jenks 1971).  I 
broke each metric into five classes.  
Negatively correlated variables were 
inversely ranked.  The final model had 
four variables with a possible 
subwatershed sum ordinal value of 20.  
Higher values were more conducive to 
sensitive species population density.  
Finally, a composite score was 
calculated for each subwatershed by 
summing all the ordinal scores for each 
metric.  These data were then displayed 
using ArcView software.   
 
Results   
 

Figure 4. Subw

Analysis of Fragstat metrics at the 
landscape level proved to be fruitless.  
After much trial and error I decided that 
any landscape level analysis would need 
to be qualitative rather than quantitative.  
Linear regression models were generally 
powerless to predict sensitive species 
densities at the subwatershed scale in the 
Whitewater watershed.  I believe that 

landscape level analysis of landcover 
data using Fragstat metrics is not 
appropriate because of issues of scale.  A 
subwatershed is not a large enough 
evaluation unit to observe landscape 
level change.  I found Fragstats class 
level metrics to be more meaningful in 
the determination of sensitive species 
populations. 

I examine  class level metrics 
next.  Class heter
subwatershed to s
troublesome.  Alt
landcover data ha
cultivated, forest 
types encompasse
the Whitewater w
simplification.  A
forest, cultivated 
could be found in
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Grass-shrub habitat containing 
NHP data were restricted to the 26 
adjacent subwatersheds located in the 

Simple linear regression with 
data from this subset of watersheds 
found four class level Fragstat metrics 

Bivariate Fit of logan-ps-ncll By CADX nca/ca

Figure 5.  Linear regression plots 
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lower portions of the Whitewater 
watershed (Figure 3c).  The spatial 
distribution of NHP data observed on  
grass-shrub habitat (Figure 4) was very 
similar to the morphologic extent of the 
Driftless Region as depicted in Figure 1.  
This relationship warranted further 
exploration.  

I tested each Fragstat metric for 
significance in predicting sensitive 
species population density using simple 
linear regression.  These tests were 
performed on all class level data pooled 
and grouped by land cover type.  The 
strongest linear relationships for 
sensitive species population density were 
found among the grass-shrub class 
Fragstat metrics.  Because NHP 
observed on grass-shrub habitat were 
only found in 26 subwatersheds, I 
created a new dataset that contained only 
variables for these subwatersheds.  

that were indicitative of sensitive species 
population density.  Linear regression 
scatter plots can be seen in Figure 5.  
Fragstat variables were as follows 
(McGarigal and Marks 1994):   

• A modified core area density 
(CADX) 

• Class area as a percentage of the 
landscape (Zland) 

• Mean patch size (MPS) 
• Interspersion juxtaposition index 

(IJI)  
Model A Table 1 – Found a 

positive relationship between the log 
transformed sensitive species population 
density and the core area density 
(CADX) of a subwatershed.  The CADX 
variable is a slight modification from the 
standard CAD class variable found in 
Fragstats literature.  Core area density is 
the number of core patches divided by 
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p 

Table 2. Moran’s test results for regression 
variables.

Variable Correlation 
CADX 0.320 0.006
M PS 0.335 0.007

ZLA ND 0.139 0.073
IJI 0.053 0.231

A Log(an-ps-ncll)  ~  CADX 6.76 -6.19 0.34 3.50 0.002 26 
B Log(an-ps-ncll) ~ MPS -0.09 -4.47 0.34 -3.49 0.002 26 
C Log(an-ps-ncll) ~ ZLAND -0.08 -3.99 0.25 2.82 0.010 26 
D Log(an-ps-ncll) ~ IJI 0.03 -6.37 0.16 2.12 0.050 26 

Table 1. Linear regression models 

 Model β0 yo r2 t p n 

100 ha. (McGarigal and Marks 1994).  
The CADX variable is the number of 
core patches divided by the total class 
area of the subwatershed.  I found this 
metric to be more representative value 
for core area density in subwatersheds 
that varied in size.   

Model B Table 1 – Found a 
negative relationship between the log 
transformed sensitive species population 
density and a subwatershed’s mean 
patch size (MPS).   

Model C Table 1 – Found a 
negative relationship between the log 
treated sensitive species population 
density and the percentage of a 
landscape composed of grass-shrub 
habitat  (ZLAND).  

Model D Table 1 - Found a 
positive relationship between the log 
transformed sensitive species population 
density and the interspersion and 
juxtaposition index (IJI).  The IJI metric 
is a measure of class dispersion in an 
evaluation unit.  Higher values represent 
more even spatial interspersion of 
similar class patches.   The interspersion 
index is a relative index that represents 
the observed level of interspersion as a 
percentage of the maximum possible 
given the total number of patch types 
(McGarigal and Marks 1994). 

Spatial autocorrelation 
 
Visual analysis of GIS mapping of 
subwatershed values of class variables 
showed some spatial clustering.  This 

visual evidence of spatial autocorrelation 
warranted investigation.  The modeled 
variables were tested for spatial 
autocorrelation using a first order 
adjacent edge matrix and Moran’s test.  
Results in Table 2 show a significant 
spatial autocorrelation influence exists 

for core area density (CADX) and mean 
patch size  (MPS).  Moran’s test has a 
null hypothesis of no spatial 
autocorrelation.  Statistically interpreted, 
there is a 99% probability that spatial 
autocorrelation exists in the 
subwatershed values for CADX and 
MPS Fragstat metrics.  Class percentage 
of the landscape (ZLAND) and 
interspersion juxtaposition index (IJI) 
have a 93% and 77% probability of 
having a spatial autocorrelation 
influence, respectively.  
 The Moran’s test results in Table 2 
suggest a spatial autocorrelation 
presence exists for the variables used to 
develop the linear regression models in 
Table 1.  Since spatial autocorrelation 
was found to exist in our model 
variables investigation of aspatial linear 
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Table 3. Results for residual Moran’s test. 

Variable Correlation p 

 

(CADXR)2 0.322 0.001 
(MPSR)2 0.242 0.003 

(ZLANDR)2 0.205 0.001 
(IJIR)2 0.190 0.011 

E Moran.Log(an-ps-ncll)  *  Moran.CADX 6.72 -6.18 0.92 3.54 0.002 26 
F Moran.Log(an-ps-ncll) * Moran.MPS -0.09 -4.49 0.74 -4.00 0.001 26 
G Moran.Log(an-ps-ncll) * Moran.ZLAND -0.08 -3.97 0.90 -2.82 0.010 26 
H Moran.Log(an-ps-ncll) * Moran.IJI 0.03 -6.42 0.96 2.18 0.040 26 
 

regression model residuals was 
warranted.  Residuals from each model 
were extracted and mapped (Figure 6).  
Visual analysis of mapped residuals 
reveals some presence of spatial 
autocorrelation for each model variable.  
A Moran’s test was performed on these 
residuals to quantify the spatial 
autocorrelation influence on the 
proposed model residuals from Figure 1.   
Residual values were squared to ensure 
positive values for the residual Moran’s I 
testing.  The results of the residual 
Moran’s I test are provided in Table 3. 

A quick glace down Table 3 
reveals that the Moran’s I test 
determined almost 100% probability that 
spatial autocorrelation was present in the 
squared residual values for models A, B 
and C from Table 1.  The interspersion 
juxtapostition index (IJI) model residuals 
were found to have a 99% probability 
that spatial autocorrelation was present. 

Since spatial autocorrelation was 
found to be present in these data, I 
decided to develop a new set of models 
using spatial linear regression (SLR).  
SLR simply removes the influence of 
spatial autocorrelation from the linear 
regression model.  Table 4 shows the 

spatial linear regression models.  All 
four SLR models show significant power 
in determining sensitive species densities 
in the Whitewater watershed.  The p 
values ranged from 0.01 to 0.04.  Stated 
another way, there is at least a 96% 
chance that the relationships stated in 
each model are not due to random 
chance.   

Model H was found to be the 
strongest predictor of sensitive species 
densities with an r2 = 0.96.  Model F was 
found to be the weakest with a r2 = 0.74.  
Comparisons between the linear 
regression Table 1 and spatial linear 
regression models in Table 4 can be 
made.  For example, 58% of the 
variability for Model A was due to 
spatial autocorrelation.  This value was 
determined by subtracting the Model E 
r2 value (0.92) from the Model A r2 
value (0.34).  

 
Analysis   

Spatial Model 
 
For analysis purposes I will only discuss 
the models found in Table 4 because 
they are progressions of the Table 1 
models.  These models did not always 
turn out as I expected but generally there 
is a biological explanation for the model.  
These models are only as good as the 
data they are based on.  In addition, I 
issue the standard warning that these 
models are only valid for the range of 
data values for which they were created. 

Table 4. Spatial regressive models. 

 Spatial Regressive Models β1 y0 r2 t p n 
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Extrapolations of these models are not 
recommended. 

Model E suggests that the greater 
the number of grass-shrub core habitat 
patches (CADX) within a subwatershed, 
the greater the density of sensitive 
species observed in that subwatershed.  
The CADX Fragstat metric is very 
useful in determining fragmentation in a 
landscape (McGarigal and Marks 1994).  
Extremely fragmented landscapes can 
have a high patch density but will 
generally have a much lower core area 
density value because many small 
patches lack a core area.  In this analysis 
a grass-shrub patch had to be at least 
2,500 m2 to contain a core area.  Grass-
shrub core areas are statistically 
important for sensitive species densities 
in the Whitewater watershed, however 
the 2,500 m2 patch size appears to be a 
threshold for patch size according to 
Model G. 

Model G suggests the greater the 
percentage of grass-shrub habitat in a 
subwatershed the lower the number of 
sensitive species in that subwatershed.  
This model is alarming.  How can 
density of grass-shrub core patches be an 
important positive predictor of sensitive 
species population density and the 
percentage of grass-shrub habitat in a 
watershed be a negative predictor of 

sensitive species population density?  I 
do not know if I can fully answer this 
but the data are statistically significant 
and interesting. 

If Model G is truly linear, then 
extrapolation would dictate that sensitive 
species densities would be at their 
highest values when no grass-shrub 
habitat existed in a subwatershed.  
Although we cannot test this, it seems 
unlikely because of the 26 
subwatersheds that contain NHP data 
only 2 subwatersheds lack sensitive 
species observations occurring on grass-
shrub habitat.  These values suggest that 
a relationship exists between presence of 
grass-shrub habitat and sensitive species 
populations. 

Experimentation with various 
non-linear models revealed nothing to 
improve Model G.  Visual analysis of 
the scatter plot for Model C, Figure 5, 
reveals a sharp decline in sensitive 
species population density when grass-
shrub habitat is between 11% and 18% 
of the landscape.  The WWP data offer 
no opportunities of determining if this is 
a random effect or an actual threshold 
response from sensitive species to the 
percentage of grass-shrub habitat in the 
landscape.  Because the WWP study is 
so general, I suspect the former 
explanation, but more data from a wider 

Figure 6. Spatial mapping of residuals from simple linear regression models.   
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array of grass-shrub habitat 
compositions would certainly be needed 
for a conclusion to be reached.  This 
leaves me with little alternative but to 
conclude that this model can only be 
linear for the range of values for which 
we have grass-shrub percentage of the 
landscape data.   

Model F suggests that the larger 
the average grass-shrub patch size, 
(MPS) the lower the subwatershed 
sensitive species population densities.  
Again, this model seems to be 
counterintuitive, but I believe it to be 
valid for the range of data collected.  
Like Model G, I struggle to find a 
reasonable explanation for the negative 
correlation of MPS with sensitive 
species density.  I believe the answer is a 
fundamental rule of ecology.  Much as 
literature has stated for years, more 
complex habitats have greater species 
densities.  I believe Leopold (1933) is 
credited for first noting that wildlife 
diversity is greater in more diverse 
landscapes.  His observations have been 
more eloquently stated:  “The 
relationship between vegetation 
structure and animal community 
organization has received extensive 
empirical examination.  It has been 
reasoned that more complex habitats 
offer a greater number of potential 
niches and therefore should support a 
greater variety of species” (MacArthur 
et al. 1962).  Following MacArthur, 
larger MPS equates to less complex 
landscape.  Take two theoretical 
subwatersheds with a fixed amount of 
grass-shrub habitat.  Arrange one with a 
few large patches and the other with 
many small patches.  The subwatershed 
with a greater number of patches offers 
more habitat complexity and therefore 
should contain a greater variety of 
species.  It should be observed that this 

example also explains Model E.  Model 
E suggests the greater the number of 
grass-shrub core habitat patches within a 
subwatershed the greater the density of 
sensitive species observed in that 
subwatershed.   

The final model in Table 4 is H.  
Model H suggests the more evenly 
dispersed grass-shrub patches are within 
a subwatershed the higher the density of 
sensitive species populations within that 
subwatershed.  I find this model 
interesting because the effects of habitat 
fragmentation are very species specific.   

Early wildlife management was 
based on the theory that increased edge 
habitat increased species diversity 
(Leopold 1933).  More recently it has 
been noted that increased edge habitat is 
detrimental to many species (Kroodsma 
1982; Sanders, Hobbs and Margules 
1991).  However, most fragmentation 
studies are landscape level studies 
designed to study forest fragmentation.  
According to Model H, even dispersion 
of grass-shrub patches equates high 
sensitive species density.  Leopold and 
MacArthur can explain Model H in that 
even dispersion of grass-shrub habitat 
translates to greater diversity of habitat.  
It could be further argued that even 
dispersion of grass-shrub habitat offers 
important connectivity to forest habitat.  
Many ecologists observe a positive 
relationship between vertical habitat 
complexity and species diversity 
(MacArthur and MacArthur 1961; 
Recher 1969).  Vertical habitat can be 
considered the number of strata within a 
habitat.  While forest offers more 
vertical complexity than grass-shrub 
habitat, the later offers more vertical 
complexity than cultivated land.  Visual 
analysis of Figure 3 shows that 
cultivated land is less prevalent in the 
subwatersheds that contain grass-shrub 
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Figure 7. Sum Ordinal model. 

habitat.  I conclude that Model H makes 
biological sense and provides statistical 
evidence to support GIS modeling of 
Whitewater subwatershed restoration 
efforts in an attempt to spatially place 
restoration areas uniformly about the 
landscape. 

Ordinal Model 
 
Analysis of the sum ordinal model in 
Figure 7 reveals that subwatersheds 4, 
18A, 19B and 21B have the best mix of 
grass-shrub habitat according to our 

models.  Subwatersheds 3A, 3B, 3C, 8A, 
9C and 12B are the most in need of 
restoration.  All of these  subwatersheds 
have a high percentage of grass-shrub 
habitat.  Restoration of grass shrub 
habitat would further decrease the 
Ordinal Model sum values. According to 
the models in Table 4, MPS and ZLAND 
are negatively correlated with sensitive 
species density.  Therefore a high 
ordinal ranking translates to a low 
Fragstat metric value.  Identification of 
subwatersheds suitable for restoration 
through introduction of grass-shrub 
habitat must start by identifying which 
subwatersheds have the lowest 
percentage of grass-shrub composition 
resulting in high ZLAND ordinal score.  
Visual analysis of the Figure 8. plots 
shows many high scoringsubwatersheds.  
A GIS query for high ZLAND ordinal 
score and low sum ordinal score results 
in three high potential restoration 
candidates.  Subwatersheds 1B, 2 and 
13B are the best candidates. 

Further analysis of the Ordinal 
Model can refine restoration focus.  
Subwatersheds 1B, 2, and 13B all 
received a MPS ordinal value of 4.  All 3 
of these subwatersheds have moderately 
low MPS fragstat values in comparison 

Figure 8. Spatial displays of ordinal values. 
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with other subwatersheds in the 
Whitewater.  These 3 subwatersheds 
have very little potential for restoration 
by manipulation of grass-shrub habitat 
patch size. 

Analysis of the CADX variable 
is more interesting.  Subwatersheds 1B, 
2, and 13B had ordinal CADX values of 
2, 1 and 2.  These subwatersheds, 
subwatershed 13B in particular, have 
good potential for restoration by 
increasing the grass-shrub core area 
density in accordance with the models 
listed in Table 4. 

Analysis of the IJI variable is 
also interesting.  Subwatersheds 1B, 2 
and 13B had ordinal IJI values of 2, 3 
and 2.  Subwatersheds 1B and 13B 
would benefit from more even spatial 
distribution of grass-shrub habitat 
patches in accordance with the models 
listed in Table 4.   

To summarize, subwatersheds 1B 
and 2 are very similar and restoration 
efforts for these 2 subwatersheds should 
be focused on increasing core area 
density and interspersion of both new 
and existing grass-shrub habitat.  
According to the proposed sensitive 
species models subwatershed 2 has less 
restoration potential than subwatersheds 
1B and 2.  Restoration efforts for 
subwatershed 2 should be focused 
toward increasing core area density of 
both new and existing grass-shrub 
habitat.   

For all three subwatersheds 
suitability would be enhanced by 
increased habitat complexity.  
Introduction of other habitats like forest 
would increase habitat complexity but, 
as discussed earlier, this type of 
restoration would be costly.  Forest 
restoration would take generations to 
enhance habitat and the cost is 
prohibitive.  I conclude that restoration 

for these subwatersheds should be 
focused on introducing small, 0.6 acre, 
grass-shrub patches uniformly across the 
landscape.   

 
   

Conclusion 
 

I believe these four models suggest that 
rehabilitation efforts in the Whitewater 
watershed should follow some general 
guidelines.  First, grass-shrub habitat 
should be introduced in subwatersheds 
where it is currently limited.   

Grass-shrub habitat was found to 
be the most important habitat for 
predicting sensitive species populations 
in the Whitewater watershed.  Grass-
shrub habitat can be restored.  Plantings 
become established in months as 
opposed to generations needed to restore 
forests.  Finally, federal NRCS programs 
like the Conservation Reserve Program 
(CRP), buffer strip initiative, and 
Wetland Reserve Program (WRP) are 
established to provide assistance and 
monies for grass-shrub restoration 
efforts. 

These models suggest that more 
is not always better.  Models indicate 
that an even distribution of 0.6 ac (2500 
m2) grass-shrub core areas offers the best 
possible habitat to enhance sensitive 
species density in the Whitewater 
watershed.  This WWP project used GIS 
to locate high potential restoration 
locations at the subwatershed scale.  One 
finding of this project is that uniform 
spatial positioning of grass-shrub habitat 
is important in predicting sensitive 
species populations. Future work in the 
Whitewater watershed should focus 
restoration planning at the patch level.  
GIS is an important tool in locating these 
patches for site specific restoration 
efforts.   
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