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Abstract 

 

Voting patterns are increasingly defined by their geographical distribution and tested for 

evidence of spatial autocorrelation, otherwise known as spatial clusters. Moran’s I is a 

common spatial statistic used to estimate the degree of spatial autocorrelation under an 

imposed spatial weights matrix. This study aims to estimate the degree of spatial 

autocorrelation between the 2020 presidential primary election results and US Census 

demographic distributions within a subset of Hennepin County, MN which include the cities 

of Minnetonka, Hopkins and St. Louis Park. Spatial and non-spatial data sets were 

downloaded from publicly available websites and transformed to attribute census data to 

voting precincts within the study area. A bivariate spatial analysis was completed using 

GeoDa software (open-source) and based on “rook” contiguity. Final results of this study 

observed positive spatial autocorrelation among race, age, household structure and median 

house income estimates when compared to Democratic voting percentages. Moreover, the 

results provided strong evidence of spatial clustering for half of the tested variable pairs 

within a ninety-five percent confidence interval and assumes there to be a significant spatial 

component to the systematic structure of their geographic distributions as a result of this 

analysis. 

                                                                                                                                         

Introduction 

 

Voting patterns in the United States are 

traditionally considered to be divided 

along urban and rural axes (Morrill, 

Knopp, and Brown, 2007) and 

strengthened by the social, economic and 

cultural differences that exist between 

geographically distinct voter groups 

(McKee and Teigen, 2009). Political 

research often combines elections data 

with census demographics to make 

ecological inference on voting behavior, 

and considers spatial context to provide 

new insight into the political geography of 

the voting population. 

 

Background 

 

Spatial statistics is a practical application 

for examining the intersection between 

election and census data. Providing a 

spatial framework to conventional 

correlation and regression methods, spatial 

statistics considers both composition and 

context of geographic data in estimating 

spatial autocorrelation (Haining, 2009). 

The term spatial autocorrelation estimates 

the degree of similarity, positive or 

negative, between nearby observations 
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defined by a geographical proximity 

(Hubert, Golledge and Costanza, 1981). 

Today, political election research assumes 

voting patterns are not independent of 

spatial effect, and therefore, exhibit some 

degree of spatial autocorrelation 

(O’Laughlin, 2008), similar to other social 

phenomena such as disease outbreak 

(Rogerson and Yamada, 2004) and crime 

density (Jeong, Moon, and Heo, 2009). 

 

Project Value 

 

Political election research has 

demonstrated the effect of spatial 

autocorrelation on election results and 

participation levels in the United States 

(Burnett and Lacombe, 2012), England 

and Wales (Cutts and Webber, 2007), 

France (Saib, 2017), Portugal (Caleiro and 

Guerreiro, 2005) and Indonesia (Yandri, 

2017). Moreover, election research has 

shown positive spatial autocorrelation to 

exist between election results and 

demographic variables (Klos, 2008). The 

concept and understanding of spatial 

autocorrelation plays a crucial role in 

developing spatial models throughout 

multiple fields of academic research, 

including political election research. The 

use of georeferenced data continues to 

increase in efforts to understand ecological 

phenomena, while most empirical research 

recognizes the importance of spatial 

autocorrelation in testing hypotheses on 

spatial relationships, estimating the degree 

of spatial effects and distance decay and 

understanding how spatial geometry might 

influence the realization of a variable and 

other valuable information (Getis, 2008). 

 The purpose of this study is to 

estimate the degree of spatial 

autocorrelation between recent presidential 

primary results and census demographics 

estimated by the US Census Bureau as late 

as 2018. In doing so, this study contributes 

to the existing literature in spatial research 

with new assessment on the current 

election cycle as well as provide insight 

into the spatial relationship between 

individual demographic variables and 

partisan support at the local level. 

 

Study Area 

 

The study area (Figure 1) is composed of 

forty-five voting precincts and thirty-two 

census tracts within the cities of 

Minnetonka, Hopkins and St. Louis Park, 

Minnesota. Combined together this area 

covers roughly forty-four square miles and 

includes a total estimated population of 

slightly more than one-hundred and 

twenty-one thousand people according to 

the US Census Bureau. Each of the cities 

included in this study are considered 

moderately liberal and have voted in 

majority for the Democratic candidate in 

all of the previous seven presidential 

elections since 1992, according to the 

Office of the Minnesota Secretary of State. 

  

Figure 1. Study area defined by voting precinct 

boundaries as of the current election cycle for 

Minnetonka, Hopkins and St. Louis Park, 

Minnesota. 
 

 In the most recent presidential 

primary election, an average of at least 

ninety-three percent of city residents voted 

for Democratic candidates as compared to 

their Republican counterparts across all 
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voting precincts in the study area. 

Considering historical election results, this 

area exhibits strong partisan support for 

Democratic presidential candidates. As 

such, it provides a good example to 

examine relationships between voting 

patterns and census demographics in an 

effort to better understand how each 

variable distribution relates to one another 

across space. Additionally, this study 

chose voting precincts and census tracts as 

the scales of measurement since both are 

relatively similar in size (but not shape) 

and are the smallest spatial units with 

readily available election and demographic 

data. Limiting the margin of error 

associated with aggregate data was also 

considered when selecting these data sets. 

 

Project Overview 

 

A bivariate spatial analysis was conducted 

to estimate the degree of spatial 

autocorrelation using publicly available 

elections and census data. This research 

examined the percent of Democratic 

support per voting precinct in comparison 

to demographic variables assigned to 

individual voting precincts listed below: 

 

 Percent non-white 

 Percent under 60 years old 

 Percent female 

 Percent below med. household 

income 

 Percent with veteran status 

 Percent with disability status 

 Percent non-family household 

 Percent with home internet access 

 

Race, age, gender and economic variables 

are commonly studied in the literature and 

similarly tested in previous research (Klos, 

2008). The remaining four variables were 

readily available at the census tract level 

and included to expand on existing 

knowledge of voting behavior and 

demographics. The intended output 

includes a summary table of the results, 

cluster maps to illustrate where positive 

spatial autocorrelation exists and 

associated scatter plots to measure the 

strength and direction of this relationship. 

The nature of this study was to explore 

where election results might relate to 

demographic variables within a spatial 

model. It is the hypothesis of this study 

that positive spatial autocorrelation exists 

between the observed voting pattern and 

census demographic distributions in the 

study area where:  

 

H0 – Observed distributions of 

Democratic 

support and census demographics occur 

randomly between one another  

 

H1 – Observed distributions of 

Democratic 

support and census demographics occur 

non-randomly between one another 

 

The success of this study relies on accurate 

data collection, transformation and 

analysis of the final results. A detailed 

methodology is described in the following 

section and includes data sources and 

techniques for spatial statistical analysis. 

Remaining sections include a summary of 

the final results, discussion on the 

implications of this study and concluding 

remarks for future research.  

 

Methodology 

 

All of the data used in this study is made 

publicly available online and available for 

download or by request. Study area 

 boundaries, election results and census 

demographics were acquired from 

multiple sources, prepared and 

transformed using Excel, R (an open-
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source statistical computing and graphics 

language) and GeoDa software (Dr. Luc 

Anselin’s open source spatial analysis 

tool). None of the data was edited or 

changed in any way except for the purpose 

of re-defining the spatial data boundaries 

to the study area and rendering election 

results and census demographic variables 

as percentages. All data captured in this 

study was retained in aggregate form and 

therefore does not present the potential for 

data privacy concerns. 

 

Data Collection and Preparation 

 

Voting precinct boundaries and census 

tract boundaries (Figure 2) were 

downloaded from Hennepin County’s GIS 

Open Data website as shapefiles 

representing the legal definitions from 

2012 and 2010, respectively. Using R the 

shapefiles were stored as spatial data 

frames using the sf (simple feature) 

package and converted to the standard 

WGS84 coordinate system for global 

positioning systems (GPS) based on 

guidelines provided by the National 

Geospatial-Intelligence Agency (NGA) for 

commercial and open-source data sets. 

 Next, state primary election results 

from 2020 were obtained from the 

Minnesota Secretary of State’s Office 

website for selected voting precincts 

within the defined study area. Vote totals 

by precinct were downloaded into Excel 

and used to calculate partisan support with 

basic cell equations – sum vote totals for 

each political party (as columns) and 

divide by the vote total for each voting 

precinct (as rows). Partisan support was 

rendered as a percentage and read into R 

using the readxl package as a tabular data 

frame.  

 Census demographic data was 

downloaded from the US Census Bureau’s 

online website. Each demographic variable 

was captured in the 2018 American 

Community Survey and was the most 

recent data available provided by the US 

Census Bureau. Census tracts were used as 

the spatial unit of measurement since most 

meaningful demographic variables are not 

recorded and/or publicly available at 

smaller scales of measurement (i.e. census 

block groups or census blocks). A single 

table was downloaded into Excel and 

transposed to include percent estimates for 

each demographic variable (as columns) 

per census tract (as rows) within the study 

area. The table was also read into R and 

stored as a tabular data frame. 

 

Spatial and Non-Spatial Data 

Transformation 

 

Most often election and census boundaries 

do not conform to one another since they 

are collected by different governing 

agencies with separate needs and 

intentions for the data (Amos, McDonald 

and Watkins, 2017). According to Dr. 

Michael McDonald of the Public Mapping 

Project (2001), there are three acceptable 

methods for merging election and census 

geography: 1) geospatially join the data 

based on largest area, 2) geocode voter 

registration from corresponding voting 

districts to census geography, or 3) assign 

geography by voting district (VTD) 

identifiers provided to the US Census 

Bureau. 

 At the time of this study, VTD 

identifiers were not included within census 

demographic data sets provided by the US 

Census Bureau at the census tract level. 

And while this study attempted to define 

census tract boundaries by geocoded voter 

registration data, it was not an accurate 

method for summarizing the data sets 

since multiple census tracts can and do 

exist within a single voting precinct and 

this relationship must be one to one, not  
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one to many. Election and census data 

were therefore merged based on largest 

areal overlap using the sf package in R 

(Figure 2). It is important to note four 

census tracts did not constitute a majority 

of any of the voting precincts and were 

therefore removed from the spatial layer 

and final analysis: tracts 221.02, 224, 

229.02 and 262.02. 

  Finally, the non-spatial election 

results and census demographics were 

merged to this spatial data frame shown in 

Figure 2 and exported as a shapefile to be 

used for spatial statistical analysis. The 

shapefile contained a total of forty-five 

discrete voting precinct boundaries, each 

defined by one of twenty-eight census 

tracts and attributed with the percent 

Democrat vote and percent demographic 

variable distributions. This shapefile was 

used as the basis for statistical analysis 

outlined in the following section. 

 

 

 

Analysis 

 

Local Moran’s I Statistic and Spatial 

Weights Matrix 

 

The most common approach to explore 

spatial autocorrelation among geographic 

data is Moran’s I statistic and local 

indicators of spatial association (LISA)  

(Matkan, Shahri and Mirzaie, 2013). 

Moran’s I is a global index which 

measures the likelihood of spatial 

autocorrelation on a scale of -1 to 1 or the 

tendency of the data to be systematically 

dispersed versus clustered. A Moran’s I 

value of 0 represents no autocorrelation or 

perfect randomness in the data. 

 Global Moran’s I is useful in 

estimating spatial autocorrelation using 

one statistic to summarize the spatial 

patterns, however it is less useful in 

determining where spatial clusters or 

outliers might exist within the data since it 

assumes the underlying global pattern is 

generally homogeneous (Ord and Getis, 

Figure 2. Resulting spatial layer (green) following the spatial join process of attributing census tract 

identifiers (red) to voting precinct boundaries (blue) based on largest areal overlap. 
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1995; Anselin, 2003). Local Moran’s I 

decomposes global indicators and focuses 

on specific locations within the data to 

identify how they might be similar or 

dissimilar to neighboring locations and can 

therefore explicate where spatial clusters 

and outliers exist outside of the global 

pattern (Anselin, 1993). Using local 

Moran’s I each location is attributed with 

its own correlation coefficient. In this way, 

local Moran’s I accounts for pockets of  

spatial heterogeneity in the data and is the 

preferred method for statistical analysis of 

spatial data. 

 A bivariate local Moran’s I is a 

continuation of the univariate Moran’s I 

and is estimated as follows: 

 

𝐼 =
𝑁

∑∑𝑤𝑖𝑗

∑∑𝑤𝑖𝑗 (𝑥𝑖 − �̄�)(𝑦𝑗 − �̄�)

∑(𝑦𝑖 − �̄�)2
 

 

The above formula represents I as the 

bivariate Moran’s I statistic and is an 

estimate of the relationship between the 

value of an original variable at location i 

(xi) and the average of all neighboring 

values for another variable j (yj) or its 

spatial lag. This study defines N 

geographic units as individual voting 

precincts within the study area. A spatial 

weights matrix was created to assign 

spatial contiguity to the data based on the 

“rook” function (Klos, 2008).  

 In this way, the spatial weights matrix 

reduces the amount of interaction of 

voting precincts and constrains the number 

of neighbors to only those voting precincts 

which share a border. Each variable and its 

neighbors are multiplied by the spatial 

weight and then divided by the sample 

variance. The result of this statistic yields 

the degree of linear association (positive 

or negative) between variable pairs at 

neighboring locations (Anselin, Syabri and 

Smirnov, 2002). The strength of the 

interaction is equal to the combined effect 

of the coefficient and row-standardized 

weights (Anselin, 2003). Of the forty-five 

voting precincts included in the study area, 

an average of 4.44 neighbors were 

estimated per voting precinct with a 

standard deviation of 1.50, according to 

the spatial weights connectivity histogram 

in Figure 3. 

 

 

 

Figure 3. Connectivity histogram generated from 

the “rook” spatial weights matrix using GeoDa 

software. This output shows the distribution of 

defined neighbors per voting precinct. 
 

Spatial Analysis Using GeoDa Software 

 

The spatial analysis was completed using 

the bivariate local Moran’s I statistic 

provided within GeoDa software. The 

final shapefile containing voting precinct  

boundaries and election and census 

demographic attributes was loaded into the 

GeoDa interface and tested for spatial 

autocorrelation between variable pairs 

under the Space – Bivariate Local Moran’s 

I menu function. 

 A bivariate local Moran’s I statistic 

estimates the degree of spatial 

autocorrelation between variable pairs, 

including an original variable and a spatial 

lag variable at each voting precinct within 

the study area. As a result, the spatial 

analysis was conducted twice for each 
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variable pair – once with the percent 

Democrat vote as the original variable and 

individual demographic variable as the 

spatial lag; and again, with individual 

demographic variable as the original 

variable and the percent Democrat vote as 

the spatial lag variable.  

 This study is interested in voting 

precincts which exhibit positive spatial 

autocorrelation (high-high or low-low) 

between demographic and voting 

percentage distributions per voting 

precinct. GeoDa software illustrates 

positive spatial autocorrelation using dark 

red (high-high) and dark blue (low-low) 

colors. These highlighted areas therefore 

represent spatial clusters where the 

distribution of the original and spatial lag 

variables is positively correlated to one 

another and provide evidence in support of 

the alternative hypothesis (H1) which 

estimates that these distributions are not 

likely to occur randomly. Areas 

highlighted in light red (high-low) and 

light blue (low-high) represent spatial 

outliers, or negative spatial 

autocorrelation, and are not an interest of 

this study.  

The estimated spatial clusters were 

calculated based on a spatially random 

reference distribution of 9,999 

permutations to assess for statistical 

significance with a minimum standard p-

value < 0.05. These areas are therefore 

supported by a ninety-five percent 

confidence interval of exhibiting positive 

spatial autocorrelation under random 

conditions.  

 

Results 

 

Following the bivariate spatial analysis 

outlined in the previous section, the final 

results of this study identify which 

demographic variables are positively 

correlated to the observed voting pattern 

and where these similarities are spatially 

clustered. Table 1 summarizes the 

relationship between each variable pair 

and includes the average percent for 

individually observed spatial clusters as 

well as the percent increase or percent 

decrease from the total average of the 

entire data set.  

 In the end, four demographic 

variables were identified to be positively 

spatially autocorrelated, either (low-low) 

or (high-high), when compared to the 

percent Democrat vote across the study 

area. These include percent non-white, 

percent under the age of sixty-five, percent 

below median household income and 

percent non-family households. While the 

remaining four demographic variables – 

percent female, percent with veteran 

status, percent with disability status and 

percent with home internet access – did 

not exhibit clustering as a result of the 

spatial analysis.  

 Many of the demographic variables 

shared clusters defined by the same voting 

precincts. These include W-3 P-E, W-3 P-

F, W-4 P-A and W-4 P-B which similarly 

exhibited positive (low-low) spatial 

autocorrelation among percent non-white, 

percent below median household income 

and percent non-family household 

demographics. Additionally, voting 

precinct W-3 P-9 exhibited positive (high-

high) spatial autocorrelation among 

percent non-white, percent below median 

household income and percent non-family 

household demographics. It is important to 

note that W-3 P-F and W-4 P-A were both 

defined by census tract 262.01 as a result 

of the spatial join process; therefore, these 

were represented by the same underlying 

demographics. 

 Resulting spatial clusters illustrate 

areas that contain either above high or 

below low estimates of partisan support 

and demographic variables as well as  
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neighbors which also contain relatively 

similar estimates for the corresponding 

variable pair. The percent non-family 

household and percent non-white 

demographic variables displayed the 

greatest evidence of spatial clustering, 

with each containing ten and seven 

spatially autocorrelated clusters of voting 

precincts between tested variable pairs, 

respectively. While the percent below 

median household income and the percent 

under the age of sixty-five each contained 

spatial clusters of five and four voting 

precincts, respectively. 

          Due to limitations on space and 

organization, not all graphics are included 

for each of the test variable pairs within 

this study. As an example, Figure 4 

Demographic  

Variable 

Cluster 

Vote 

Mean 

+/- Total 

Mean 

Cluster  

Demographic 

Mean 

+/- Total 

Mean 

Cluster 

Pattern 

Clustering 

Voting Pre-

cincts 

Percent Below Med. 

HH Income 

95.0% +1.7% 65.1% +18.4% High-High W-3 P-9 

90.2% -3.1% 29.8% -16.9% Low-Low 

W-3 P-E, W-3 

P-F, W-4 P-A, 

W-4 P-D 

Percent Non-Family 

HH 

95.2% +1.9% 53.6% +8.0% High-High 

W-1 P-4, W-2 

P-5, W-2 P-6, 

W-3 P-9, W-3 

P-12 

89.6% -3.7% 23.7% -21.9% Low-Low 

W-3 P-E, W-3 

P-F, W-4 P-A, 

W-4 P-B, W-4 

P-D 

Percent Non-White 

95.0% +1.6% 21.3% +4.2% High-High W-3 P-9 

90.1% -3.2% 6.9% -10.2% Low-Low 

W-3 P-E, W-3 

P-F, W-4 P-A, 

W-4 P-B, W-4 

P-D, W-4 P-E 

Percent Under 65 

Years 

95.4% +2.1% 91.1% +7.9% High-High 

W-1 P-4,  W-

2 P-8, W-4 P-

16 

90.6% -2.7% 81.5% -1.7% Low-Low W-1 P-A 

Percent Female 
93.32% N/A 51.2% N/A 

No clus-

ters 
N/A 

Percent Veteran  

Status 
93.32% N/A 6.0% N/A 

No clus-

ters 
N/A 

Percent Disability 

Status 
93.32% N/A 9.6% N/A 

No clus-

ters 
N/A 

Percent Home  

Internet Access 
93.32% N/A 88.1% N/A 

No clus-

ters 
N/A 

 

The bottom four demographic variables paired with voting percentages did not exhibit positive spatial 

autocorrelation or clustering as a result of this analysis. With no clusters identified for these variables there 

is no way to compare location-specific distributions from the global data set and are therefore described as 

“N/A” in the above table. 

Table 1. Cluster Mean Values, Difference (+/-) from Global Mean and Cluster Pattern/Locations of Spatial 

Autocorrelation among Voting Precincts. 
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illustrates the geographical distribution of 

the estimated positive (high-high) spatial 

autocorrelation between percent Democrat 

vote and percent non-family households. 

Figure 5 illustrates the direction and 

strength of this relationship using a scatter 

plot to estimate the local Moran’s I 

coefficient and linear regression along an 

x- and y-axis. In this example, it is 

perceived that below average and above  

average observations are geographically 

distinct from one another and can be 

 

  

represented by a statistically significant 

positive relationship based on the local 

Moran’s I coefficient. 

  A summative assessment of these 

results and how they relate to previous 

research is discussed in the following 

section. Study limitations, new discoveries 

and opportunities for future research are 

also included. 

 

 

 

 

 

Figure 4. Cluster maps showing positive spatial autocorrelation between percent non-family households 

(NFHH) and percent Democratic support (% Dem). Areas in dark blue represent voting precincts with 

significantly lower estimates of non-family households and less Democratic support compared to respective 

mean values, while areas in dark red represent significantly higher estimates of non-family households and 

greater Democratic support compared to the mean. Voting precincts highlighted in yellow constitute the spatial 

clusters estimated by the bivariate local Moran’s I coefficient. 

 

 
Figure 5. Scatter plot showing the strength and direction of the same variable pair included in the above cluster 

maps. The value along the x-axis is defined as the original variable, while the value along the y-axis is the 

spatial lag variable. Spatial clustering occurs around the voting precincts pointed within the upper right-hand 

quadrant of each scatter plot. 
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Discussion 

 

The goal of this study was to explore the 

spatial relationship between state primary 

elections data and census demographics. 

The results estimate that four of the eight 

demographic variables were, in fact, 

positively spatially autocorrelated to 

Democratic support within a ninety-five 

percent confidence interval. Local 

Moran’s I explicates the relationship 

between election results and census 

demographics and provides strong 

evidence of spatial clustering between the 

voting pattern and census demographic 

distributions and can therefore reject, in 

part, the null hypothesis that these 

distributions occur randomly.  

 

Literary Support and Divergence 

  

The results of this study are supported by 

existing literature which observed positive 

spatial autocorrelation among general 

voting behaviors under geographical 

concentration (Kim, Elliot and Wang, 

2003; Seabrook, 2009; Saib, 2017). Spatial 

clustering of voting and demographic 

distributions converge with results from 

Klos (2008) in which race, age, and 

median household income trends were 

similarly observed to correlate with 

regional voting patterns at the local level. 

Assuming that these patterns are not 

independent of spatial effect under random 

conditions, the results of this study are 

also defended by the general 

understanding that political behavior often 

exhibits some degree of spatial 

autocorrelation due to the geographic 

forces that are inherent to the data set 

(O’Laughlin, 2008).   

 It is difficult to interpret the 

demographic variables that were not 

spatially clustered since there is seemingly 

no consistent relationship to partisan 

support in the study area. Under the local 

Moran’s I statistic, these demographics are 

inconsistent in their distributions 

depending on the original and spatial lag 

variable assignment. The spatial structure 

of these variables are therefore estimated 

to exist in a completely random 

distribution in comparison to one another 

from this analysis and do not provide 

much room for inference or interpretation 

beyond this understanding.  

Demographic variables like veteran 

and disability status and home internet 

access are not commonly discussed in the 

existing literature and very well could be 

unrelated to voting patterns in general. It is 

also possible that these variables would 

test differently under a different spatial 

weights matrix or confidence interval. 

That said, gender is thoroughly discussed 

in the literature, but whether due to little 

variation among the female population per 

voting precinct in the study area or an 

insignificant estimation under the imposed 

ninety-five percent confidence interval, 

gender was not observed to have a positive 

correlation to the observed voting pattern 

in this study. 

 

Study Limitations 

 

As spatial analysis continues to contribute 

to political science research and theory, it 

is important to understand the limitations 

and meaning of this type of analysis. 

While this study does not claim that 

certain demographic distributions lead to 

partisan support, or the inverse for that 

matter, the results of this study do indicate 

areas with observed similarities between 

half of the tested variables centered around 

neighboring voting precincts. In the same 

vein, results from this analysis do not 

provide reasons for why spatial clustering 

exists – they simply speak to what was 

observed under random conditions and 
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whether the apparent similarity (or 

dissimilarity) in values for a feature and its 

neighbors is statistically significant or not. 

Given the scope of this study, it is 

impossible to determine all of the factors 

that contribute to the geographic 

distribution of voting patterns and census 

demographics; however, local Moran’s I 

does well to estimate the spatial 

relationship between these variable pairs 

under the assumption that their 

geographical reference point is not 

irrelevant (O’Laughlin, 2008).  

 Spatially correlated clusters were 

most commonly observed along the 

southwest and east regions of the study 

area, which could be relevant if these areas 

are comprised of similar neighborhood 

types or population groups. While only 

some of the voting precincts were 

identified as statistically significant, there 

still exists a degree of similarity from 

neighboring precincts not identified in the 

cluster maps as the result the spatial 

analysis method (Anselin, 2003).  

 Among the limitations associated with 

this study, the use of census demographics 

creates the problem of ecological inference 

(Shively, 1969), or inferring individual 

behaviors from aggregate data. That said, 

this practice is common among political 

science research and mitigated by the use 

of data recorded at the census tract-level as 

opposed to less granular estimates. 

Another limitation stems from the spatial 

join process which resulted in losing a 

total of four census tract identifiers. Due to 

common differences between census and 

election geometries, study results are not 

entirely representative of the study area 

and would be more accurate if all voting 

precincts were attributed to a single, 

unique census tract. 

 

Future Research 

 

Future research is necessary to further 

substantiate the presence of spatial 

autocorrelation among voting pattern and 

demographic trends. A more 

comprehensive spatial analysis would 

resolve many of the limitations associated 

with this study and expand on existing 

research with data from future election 

cycles and the 2020 Census project. 

Ongoing efforts to relate election and 

census spatial boundaries will also provide 

new techniques for comparing these data 

sets in future studies. 

  

Conclusion 

 

Voting patterns and census demographic 

distributions are not necessarily 

independent from their geography and do 

exhibit spatial autocorrelation under a 

spatial model estimated by bivariate local 

Moran’s I. Spatial analysis is a valuable 

approach for understanding current 

political phenomena and patterns of spatial 

heterogeneity within an evolving 

electorate in presidential elections. 

Improved technology and data accuracy is 

imperative for future research on this topic 

and will provide new insight and greater 

transparency into the political process. 
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