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Abstract 
 
The Vermillion River Watershed is an important natural and economic resource for 
Dakota County, Minnesota due to its scenic beauty, water quality, and recreational 
opportunities. As the county continues to develop, the watershed is also undergoing rapid 
urbanization as a result of land use changes. Land use changes result from complex 
interactions of many factors including policy, management, economics, culture, human 
behavior, and the environment (Pedlowski, et al, 1993). Understanding land use change is 
critical since these anthropogenic processes can have broad impacts on the environment. 
This project illustrates how combining a geographic information system (GIS) and 
artificial neural networks (ANNs) can aid the understanding of land use change and the 
effects of watershed urbanization on stream flow characteristics. Historic land use maps 
and other spatial data layers (drivers) along with ANNs and stream gauge records to 
assess stream flow changes. During the period of 1990 – 2000, urban land use increased 
from 9% to 13% within the vermillion watershed. Assuming all driving factors remain 
the same, the urban land use will be 26% by year 2010. Between the period of 2000 and 
2006, median and minimum daily discharges, total volume runoff and flood magnitude in 
the Vermillion River north creek subwatershed increased moderately.  
  
Introduction 
 
Study Area  
 
Vermillion River Watershed occupies 
the central part of Dakota County 
located in the southern part of the Saint 
Paul and Minneapolis metropolitan area 
of Minnesota as shown in Figure 1. This 
watershed is home to five cities as well 
as several townships spread throughout 
thousands of acres of farmland. It is an 
important and major tributary to the 
Mississippi River.                                                                  

 

 
Figure 1. Vermillion study area. 
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Vermillion River Watershed  
 
The Vermillion River watershed is one 
of the largest watersheds in the Twin 
Cities (Minneapolis/Saint Paul) 
metropolitan area. The river begins in 
the southeastern part of Scott County, 
and flows through the central part of 
Dakota County to the city of Hastings. 
Previous research conducted on the 
Vermillion River in the early 18th 
century indicated that this area was a 
vast coverage of prairie, oak trees, and 
other timbers coupled with a network of 
clean flowing rivers and streams (Riggs, 
2002).  

During this period, people who 
made their homes along the Vermillion 
River and its surrounding area 
appreciated the area’s fertile soils and its 
natural native to small streams, creeks, 
lakes, and spring ponds; additionally, 
farmers grew various crops such as 
wheat, corn, oats, barley, and potatoes 
along the Vermillion River (Riggs, 
2002).  

Population figures from previous 
research shows that there is a 
tremendous change around the 
Vermillion River. In 1900, more than 
half of Dakota County’s population lived 
in rural areas. Twenty years later, the 
population figure dropped to less than 40 
percent (Riggs, 2002).  World War II 
also has significant effects on farming 
activities and the communities in this 
study area. Previous research indicated 
that in the early 1940s, the U.S. 
government acquired more than 11,000 
acres of land in the city of Rosemount to 
build Gopher Ordnances powder plant 
(Riggs, 2002).  

After the war, some of the 
communities near the Vermillion River 
lost additional farmland as Twin Cities 
resident moved farther south. Farms 

gave way to residential and commercial 
development.  In 1960, Dakota County’s 
population was 78,303; by 1998, the 
population was 339,256. By 2020, the 
Twin Cities Metropolitan Council 
projects that Dakota County‘s population 
will exceed 456,000 (Riggs, 2002). 

Generally, it was inferred that 
over 150 years, the areas near 
Vermillion River have tremendous 
changes from prairie, oak trees, and 
forests to farmland and towns. Farmland, 
however, still dominates much of the 
area, with increasing urban landscapes 
that is made up of streets, highways, and 
bridges. As land use/land cover near the 
Vermillion River changes, so too has the 
river.  

Because of drastic changes in 
land use as a result of urbanization, there 
is a greater need to forecast future land 
use based on past historic land use data 
so that stakeholders, engineers, and 
planners can better understand what 
planning efforts should be made as 
development continues in the area 
(Figure 2).  

 
 Natural watershed Boundary 
 Watershed Management Organization Boundary 

 
Figure 2. Management boundaries within 
Vermillion River watershed.  
 
The process of land use planning 
adopted the use of the Land 
Transformation Model (LTM), which 
couples geographic information systems 
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(GIS) with artificial neural networks 
(ANNs) to forecast land use changes.  
 
GIS and LTM 
 
The value of the LTM regression-type 
model is that the relative contribution of 
different variables for predicting a given 
land use change is easily obtained. 
Because of the spatial nature of many of 
the input variables, integration with GIS 
is essential. GIS will be used to manage 
and analyze spatially explicit data 
associated with the model. For example, 
GIS will be used in building input 
variables for the model, identifying 
spatial pattern in data (Openshaw and 
Clarke, 1996) and quantifying observed 
and/or predicted temporal changes in 
spatial pattern (de Koning et al., 1999).  

The Land Transformation Model, 
based on Artificial Neural Networks 
(ANN) was designed to emulate the 
functionality of biological neurons in 
order to achieve a higher parallel 
processing potential for digital data. 
ANNs are a branch of information 
science that is classified as “machine 
learning algorithms.” There are many 
different types of ANNs. The multi layer 
perception (MLP) neural net described 
by Rumelhart et al. (1986) is one of the 
most widely used ANNs, which will be 
adopted for this research. MLP consists 
of three different layers: input, hidden, 
and output. The MLP allows a computer 
to develop the best possible fit between 
input vectors. 

ANNs are used to learn the 
pattern of development in the area and 
test the predictive capacity of the model. 
The LTM follows four steps: 

1. Processing of data to create 
spatial layers of predictor 
variables; inputs are generated 
from a series of spatial layers that 

are stored and managed within 
GIS. These base layers represent 
land use (such as agriculture 
parcels and urban areas) or 
features in the landscape (e.g. 
roads, rivers, lakes). Grid cells 
are coded to represent predictors 
as binary (presence =1 or 
absence = 0). 

2. Applying spatial rules that relate 
predictor variables to land use 
transitions for each location in 
the area; there are four classes of 
transition rules in ANN: (1) 
neighborhoods; (2) patch size; 
(3) site specific characteristics; 
and (4) distance from the 
location of a predictor cell. The 
choice of rules depends on the 
individual involved and the study 
area. Neighborhood effects are 
based on the premise that the 
composition of surrounding cells 
has an effect on the tendency of a 
central cell to transition to 
another use. Patch sizes relate the 
variable values of all cells within 
a defined patch (e.g. parcel) to 
the likelihood of land use 
transition. Site-specific 
characteristics are values 
assigned to a cell based on 
characteristics specific to each 
grid cell. The distance spatial 
transition rule relates the effect 
of the Euclidean distance 
between each cell and the closest 
predictor variable. Certain 
locations are coded so that they 
do not undergo transitions; this is 
necessary for areas within the 
study area where development is 
prohibited, such as parks and 
water. These cells are coded with 
a “0” if a transition cannot occur; 
all other locations are assigned a 
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“1.” All such layers are then 
multiplied together to generate 
one single layer of “exclusionary 
zones.” 

3. Integrating predictor variables; 
there are three different types of 
integration methods: multi-
criteria evaluation (MCE), ANNs 
and logistic regression (LR). In 
this research, all input grids were 
integrated using ANN, the cell 
size was set to 100 x 100 m and 
the analysis window to a fixed 
base layer – Vermillion River 
watershed boundary. 

4. Temporally indexing; this is the 
amount of land that is expected 
to transition to urban over a 
given time period. This was 
determined using a “principle 
index driver” (PID). This 
involved calculating the amount 
of area that underwent transition 
to urban use based on analysis of 
historical land use data. Future 
projections will be made for each 
10 year time step by assuming 
that the same number of cells 
will transition to urban in each 
10-year period as in the observed 
10-year period. 

 
Methods 
 
Data Sources  
 
The land use database was obtained 
through MetroGIS Datafinder, which is 
a site for discovering geospatial data 
pertaining to the seven counties in 
Minneapolis-St. Paul Metropolitan Area. 
The 1990 land use layer consisted of a 
rectified 1990 air photo, mylars showing 
1980 and 1984 land use delineations 
(scale of 1:9600), and county parcel data 
with assessors attributes indicating 

various land use type information; 
furthermore, a 2000 land use layer was 
developed from 2000 digital orthophoto 
quarter quads (0.6 meter resolution). 
This layer was delineated from 1997 
land use and county parcel data with 
assessor attributes indicating various 
land use type information. These land 
use layers were classified using the 
Anderson land use/land cover 
classification system (Anderson et al., 
1976).  

This system was aggregated to 6 
super classes – urban (residential, 
industrial & commercial), 
agriculture/forest, highways, 
shrub/undeveloped, water and 
parks/recreations. Other spatial layers 
such as county roads, highways, rivers, 
lakes and parks were obtained from 
Dakota County. Annual discharge 
statistics were derived from daily mean 
discharge records (ft3 S-1) for the 
Vermillion River Watershed north creek 
gauge, which was obtained from the 
Dakota County Soil and water 
Conservation District (SWCD). 
 
GIS-Based Predictor Variables 
 
Forecasting models predict the future 
values of a series using two sources of 
information: the past values of the series 
and the values of other time series 
variables. Other variables used to predict 
a series are called predictor variables 
(SAS/ETS User’s Guide, 1999).  A 
predictor variable is a variable used in 
regression to predict another variable. It 
is sometimes referred to as an 
independent variable if it is manipulated 
rather than just measured.  

Five predictor variables and the 
exclusion zones were calculated and 
stored as separate Arc/Info grids using 
the GIS interface; the method of 
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calculating them is summarized below 
and illustrated in figures 3a-f: 

Transportation: The distance 
from each cell in the region to the 
nearest highway and county roads was 
calculated and stored. These two grids 
represent the potential accessibility of a 
location for new development. These 
features serve to improve the access of 
the site to larger urban areas.  

Landscape features: The distance 
from lakes and rivers was also 
calculated. Cooper et al. (1997) has 
found that landscape topography is an 
influential factor contributing toward 
residential use 

Urban services: The urban 
distance variable was the minimum 
distance of each cell to the nearest urban 
cell from the 1990 historical land use, 
and was calculated and stored as a 
separate grids. It was assumed that the 
cost of connecting to current urban 
services decreases with distance from 
urban areas. 

Exclusionary Zones: The 
exclusion zone for this research work 
was composed of the following GIS 
layers: areas that were urban in 1990 
(existing urban areas); locations of open 
water; locations of parks within 
Vermillion River watershed were 
restricted as being areas of non-
development. 

In Figures 4a-f, the distance 
refers to the Euclidean distance, which is 
the straight line distance to the spatial 
layers of predictor variables from the 
mask layer (the boundary polygon of the 
study area). The legend areas of “high” 
approach distances ranging between 
33,430.7 and 8,285.5 feet while the areas 
of “low” approach distances of 0.0 feet. 
  

 
Figure 3a. Distance to major highways. 
 

 
Figure 3b. Distance to roads.  
 
 

 
Figure 3c. Distance from lakes.  
 
 

 
Figure 3d. Distance from rivers.  
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Figure 3e. Distance to urban areas.   
 

  
Figure 3f. Exclusionary Zones within the study 
area. These areas are restricted and are not to be 
impacted by development.  
 
Procedures 
 
Analysis involved the following 
sequence: 
 
1. Gather all available data including 
roads, rivers, lakes, highways, county 
boundary, Vermillion River watershed 
boundary, parks/open spaces and 
historical land use data for 1990 and 
2000. 
 
2. Re-project all required data on the fly 
into the Dakota County geographic 
coordinate systems MN Dakota Lambert 
Conformal Conic - (UTM NAD83). 
 
3. Use Spatial Analyst to calculate the 
straight-line distance from each cell in 
the study area to the nearest spatial 
features such as roads, lake, rivers, 
highways and urban for the year 1990; 

the outputs are refered to as predictor 
variables or drivers.  
 
4. The land use data from 1990 and 2000 
were converted from features to raster; 
the following layers were then 
reclassified: urban = 1 and the remaining 
data (agriculture/forest, parks, 
undeveloped, highways and water) = 0; 
they are named as “landusebase” and 
“landusefinal” respectively.  
 
5. The output layers in step 3 above were 
converted to ASCII files by selecting the 
raster to ASCII option of Conversion 
Tools in ArcToolbox as observed in 
Figure 4. 
 

  
Figure 4. Raster to ASCII process. 
 
All the generated outputs were stored in 
the same folder that contain all the LTM 
executables files. 
 
6. Each of the two outputs, landusebase 
and landusefinal from step 4, were 
reclassified to restrict certain portions of 
the datasets from the analysis. This 
restricted data was not included in the 
analysis. In this research, such cells were 
reclassified as 4, while the rest of the 
data was assigned a value of 0. In these 
datasets, urban, water, parks/open spaces 
areas, and no data in 1990 were excluded 
as areas that will not be allowed to be 
urbanized in the future. The output was 
named RE_LU_1990. Since ANN 
‘learns’ from land use from 1990 to 
2000, landusefinal water, parks, and no 
data were reclassified as 4, while urban 
(to avoid being re-urbanized) and the 
rest of the data were assigned a value of 
0, and it was named RE_LU_2000. The 
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two output layers above – RE_LU_1990 
and RE_LU_2000, contained values 
which were added in spatial analyst. The 
calculation output was then reclassified 
again. The output grid contained cell 
values of 4 and 8 and were reclassified 
as 4 while cell values of 0 were assigned 
a value of 0. The final output was then 
converted to an ASCII file with the 
aforementioned ASCII conversion 
model.  The ASCII file generated in 
tabular format was used as input for the 
neural network application.  
 
Implementing the LTM 
 
The LTM was used to project patterns of 
urban land development in the year 2000 
using ANNs trained on the actual 
changes between 1990 and 2000 for 
Vermillion River watershed. In order to 
develop a network with adequate 
predictive capacity, it was necessary to 
train and test the ANN with different 
input data. Training involved presenting 
input values and adjusting the weights 
applied at each node according to the 
learning algorithm. Testing presented a 
separate data set to the trained network 
independently to calculate the error rate. 
The neural network was designed to 
have a flexible number of inputs 
depending on the number of predictor 
variables presented to it. All input grids, 
which existed in Arc/Info Grid formats, 
were then normalized to a range of 0.0 to 
1.0 and converted into ASCII 
representation called a “pattern file,” 
which is the required format for ANNs. 
The neural network trained on the input 
and output data for 10,000 cycles, after 
which no significant difference in mean 
square error between the modeled output 
and presented data was observed. The 
testing exercise that followed used the 
driving variable input from all cells 

(except those located in the exclusionary 
zone) in the study area but with the 
output value removed. The network file 
generated from the training exercise was 
used to estimate output values for all of 
the cells. The output was estimated as 
values from 0.0 (not likely to change) to 
1.0 (likely to change); the output file 
created from this test exercise was called 
a “result” file as shown in Figure 5. 
 

 
Figure 5. Test results derived from ANNs and 
LTM. Values of 1 indicated likelihood for land 
to change; values of 0 indicated land areas not 
likely to change. 
 
GIS was used to determine that 51,179 
cells (or 12.0202 acres ) transitioned into 
urban areas in Vermillion River 
watershed during the 10 year period 
from 1990 – 2000. Thus, 51,179 cells 
were selected from the result file that 
had the greatest likelihood values; these 
cells were classified as ‘new urban’ as 
these areas experienced new urban 
development.  

Testing was completed by 
comparing those cells that were 
observed to transition (mutation 
changing) based on the data (Figure 6). 
Testing showed the cells with highest 
likelihood of transition. The following 
metric was used to assess the 
performance of the model: 
 

No. of cells predicted to change 
 

No. of cells that transitioned (i.e. 51,179) 
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Urban Growth 
 
Percentage of urbanization that occurred 
between year 1990 and 2000 was 
calculated via GIS. Urban areas were 
summed in acreages for years 1990 and 
2000 and then divided by the total 
acreages value of the entire study area, 
then multiplied by 100 to convert to a 
percentage.   

 
Urban % = n / T * 100 

 
Where n = number of urban acres for 
that year, and T = number of the acres of 
the entire study area.  
 
Annual Hydrologic Statistics 
 
For the stream gauge data collection 
period (2000 – 2006), maximum, 
median, and minimum annual discharges 
were calculated as well as the total 
annual runoff volume and total annual 
precipitation. Annual discharge statistics 
were derived from daily mean flow 
records (ft3 S-1).  Maximum and 
minimum annual discharges are the 
single daily mean maximum and 
minimum discharge values (ft3 S-1)   for 
each water year, respectively. Median 
annual discharges are daily mean 
discharge values with equal number of 
higher discharge values above it and 
lower discharge values below it for each 
water year. Annual runoff was estimated 
by averaging the mean daily discharge 
for each day of the year and converting 
this annualized mean daily discharge 
into a total annual flow volume (ft3  per 
year). Annual discharge statistics and 
total runoff volume was plotted on a 
logarithmic scale. Temporal hydrologic 
trends were estimated with the linear 
regression model: 
 

log (D) = a + bY 
 
Where D is discharge, Y the year, a is 
the y-intercept, and b is the regression 
coefficient. To assess hydrologic 
changes in response to increasing 
urbanization, regression analyses used 
only hydrologic summary statistics from 
2000 to 2006. The regression analyses 
are not intended to be used for predicting 
future discharge values but rather are 
used as an aid in identifying trends in 
discharge over the period of records for 
stream gauging. The back-transformed 
regression coefficient (B)  
 

B = 10b  - 1 
 
This coefficient provides an estimate of 
the percent increase in discharge per 
year, over the period considered in the 
regression analysis. 

Annual precipitation was 
estimated for each year by summing 
daily rainfall totals for the entire year. 
Days reported with “trace” amounts of 
rainfall were treated as zeros in this 
calculation. Annual summary statistics 
were plotted on logarithmic scales. 
 
Flood Frequencies 
 
To estimate the frequency of flood flow, 
that is, a 1-in-N-year (where N = number 
of years) flood event, the recurrence 
intervals of the peak annual stream 
discharge during the period of the record 
were determined. To determine the 
reoccurrence intervals, annual peak 
stream discharges during the period of 
2000 – 2006 were ranked from highest 
to lowest, that is; the highest discharge 
receives a rank of 1 while the lowest is 
5. Reoccurrence intervals were 
calculated for the period of 2000 – 2006. 
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P = Rank/No of observations +1 
P = m / (n+1) 

 
Where p is the probability, n is the 
number of discharges ranked, and m is 
the rank of each discharge. 
 

T = 1/P 
 

Flood recurrence interval (T) is the 
reciprocal of flood probability (P) 
(White and Greer 2004). Discharge 
values and reoccurrence intervals were 
then plotted for evaluation. 
 
Results 
 
Land Transformation Model 
 
The LTM was used to forecast the year 
2000 and a change detection of 
differences between the observed and 
predicted. These are shown in (Figure 6).  
The results from the LTM simulation for 
Vermillion River watershed are provided 
in Figure 7(a-c). Recall that land use 
data used for the training and testing of 
the neural network were from 1990 and 
2000 historic land use data. Urbanization 
that was experienced between the period 
of 1990 to 2000 were used to then 
project the next locations that were 
expected to transition to urban areas 
(considering the restricted exclusionary 
zone). Time progressions of 2010 and 
2020 were then mapped using GIS.  
 

 
Figure 6.  An overlay of model predictions and 
observed changes in Vermillion River watershed 

(Red cells are the new urban areas from 1990 to 
2000). 
 

 
Figure 7a. Land use 2000; Urban area in year  
2000 is represented in red. 
 

 
Figure 7b. Urban land use projection for 2010; 
Forecasted urban growth for year 2010 is 
represented in purple. 
 

 
Figure 7c. Urban land use projection for 2020;. 
Forecasted urban growth for year 2020 is 
represented in purple. 
 
During the model development, these 
maps were used as visualization tools to 
discern the types of spatial error patterns 
that might suggest missing driving 
variables. A 46% percent correct match 
of targets and observed urban change 
was obtained in the final model 
simulation presented in Figure 7 
(correctly modeled targets are 
represented in red; locations not correct 
are represented in blue). 
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Based on changes between the years of 
1990 and 2000, LTM predicted a 
doubling of urban areas. Thus, if 
urbanization was occurring at the same 
rate as it did between 1990 and 2000 (10 
year interval) and with the same 
influences (pressures, incentives, drivers, 
etc) figures 8b and 8c could be the 
possible scenario for urban expansion in 
2010 and 2020. 

These projections illustrate how 
the ANN could be trained on 
relationships between urbanization and 
all of the predictor variables that 
occurred in Vermillion River watershed. 
The amount of urban development 
within the Vermillion River watershed 
moderately increased during the period 
of 1990 to 2000. When expressed as 
percentages of the total watershed area, 
the amount of urbanized land increased 
from 9% to 13%, and that of year 2010 
was projected to be 26% considering all 
the driving factors were the same. 

 
Annual Discharge, Runoff Statistics, 
and Flood Frequencies 
 
Annual minimum and median discharges 
in Vermillion River watershed increased 
slightly from 2000 to 2006, which may 
have resulted from more forest/ 
agricultural land being exposed to 
human activities during urban 
development (Figure 8). Annual 
maximum discharge provides a measure 
of the magnitude of the flood in a stream 
during a year (Konrad and Booth, 2002). 
The regression coefficient (b) was used 
to identify the trends of discharge over 
the period of 2000 to 2006, and the 
back-transformed regression was used to 
provide an estimated percentage increase 
in discharge per year over the period of 
2000 to 2006 as considered in the 
regression analysis, while the coefficient 

of determination (R2) is a statistic that 
gives information about the goodness of 
fit of a model. The higher the R2, the 
more useful the model, as shown in 
(Table 1). The median discharge values 
were the highest, meaning that the 
regression fits more accurately than 
either for the maximum or minimum.  
 

 
    2000   2001 2002   2003   2004 2005 2006 

        Water Year 
Figure 8. Annual maximum, median, and 
minimum discharges recorded at Vermillion 
River watershed north creek gauge during the 
period of 2000 – 2006. 
 
Table 1. R2  expresses the coefficient of 
determination; b defines the regression 
coefficient; B expresses the back-transformed 
regression coefficient. 
 R2 b B 
Maximum 23.76 0.02 0.05 
Median 50.99 0.05 0.12 
Minimum 49.86 0.04 0.09 
 
The total annual runoff in the Vermillion 
River watershed exhibited a high degree 
of annual variation but showed a slight 
increase trend during the period of 2004 
– 2006 (Figure 9). 
 

 
Figure 9. Annual runoff for 2000 -2006 at the 
Vermillion River watershed north creek gauge. 
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Much of the rainfall in the watershed 
covered with forest and pastures is 
absorbed into the porous soils 
(infiltration). This is stored as ground 
water, and moves back into streams 
through seeps and springs. Thus, in 
many rural areas, much of the rainfall 
does not enter streams all at once, which 
helps prevent flooding  
When areas are urbanized, much of the 
vegetation and top soil is replaced by 
impervious surfaces such as roads, 
parking lots, and pavement. When 
natural land is altered, rainfall that used 
to be absorbed into the ground now must 
be collected by storm sewers that send 
the water runoff into local streams or 
water retention ponds. These streams 
were not "designed by nature" to handle 
large amounts of runoff, and thus, they 
can be prone to more flooding. Flood 
magnitude in the Vermillion River north 
creek has increased with increasing in 
urbanization in the watershed as seen in 
Figure 10. 
 
 

 
Figure 10. Flood frequency during 2000 -2006. 
 
Impervious surfaces can have an effect 
on local streams, water quality, and 
stream flow and flooding characteristics. 
Although this research did not measure 
impervious cover, the ANNs simulation 
output and results increased when 
urbanization was forecasted, which 

predicts a greater increase in impervious 
surfaces thereby leading to the greater 
potential for flooding and lack of runoff 
infiltration.   
 
Effects of Urbanization  

Urbanization occurs as a result of land 
use changes, which include some of the 
following: deforestation, bulldozing of 
land for houses and subdivisions, septic 
tanks, and wells (Hunt and Steuer, 
2001). Construction of new roads impact 
and divert streams. In the course of 
construction, there will be more storm 
runoff and erosion because there is less 
vegetation to slow water. Flooding can 
also occur because water-drainage 
patterns have changed. This increases 
and promotes the likelihood of greater 
sediment loading in streams. This 
increases the chance of flooding and 
harms the water quality of streams. In 
some areas, small streams are paved 
over (using culverts) and natural land 
that used to soak up runoff are replaced 
by roads and large areas of pavement 
(Figure 11). Consequently, water that 
used to soak into the ground now runs 
off into streams. The runoff can also be 
collected by storm sewers and sent to 
small streams, which can increase flood 
potential as well.  

 
Figure 11. An example of impervious surfaces. 
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Recommendations  
 
Recommendations are sought to learn 
how Dakota County and VRWJPO – 
Vermillion River Watershed Joint Power 
Organization can use this study to reduce 
the effect of urbanization on the study 
area watershed. After observing the 
findings, it is strongly recommended that 
any new development in a recharge area 
of the stream be required to preserve 
infiltration and minimize runoff. High 
infiltration areas in the watershed should 
be identified as desirable green space for 
parks, trails, and other recreational uses. 
Future development in the Vermillion 
River watershed should be planned to 
reduce runoff so as to protect the 
watershed by siting detention basins in 
high-runoff areas.   
 
Conclusion 
 
This paper outlines the Artificial Neural 
Networks based Land Transformation 
Model and the relationship between 6 
predictor variables and urbanization. The 
model was performed with a relatively 
predictive ability (46%) at a resolution 
of 100m X 100m.  

Several assumptions were made 
in order to keep the model simple. First, 
it was assumed that the pattern of each 
predictor variable remained constant 
beyond the year 2000. For example, the 
location of roads and highways are likely 
to change (e.g. new roads will be built) 
and they may respond to changes in land 
use. Second, spatial rules used to build 
the interactions between the predictor 
cells (set of spatial predictor variables 
that are used to predict the locations of 
changes-drivers) and potential locations 
for transition (historical data) are 
assumed to be correct and remain 
constant overtime. Finally, the neural 

network itself was assumed to remain 
constant over time. Thus, the relative 
effect of each predictor variable was 
assumed to be stable. This study found 
that the urban areas in the Vermillion 
River watershed increased from 13% to 
19% between the periods of 1990 to 
2000. With all of the predictors and 
other driving factors remaining the same, 
the urban areas for the year 2010 and 
2020 was forecasted. This study also 
illustrated how increased urbanization of 
Vermillion River watershed has resulted 
in (1) a slight increase in annual, 
median, and minimum discharge; (2) an 
increase in flood magnitudes; and (3) 
geomorphic changes to stream channel. 
The changes were also attributed to an 
increased conveyance of storm runoff 
from greater impervious surface area. 
Findings of this study can be effectively 
utilized by resources managers, 
community planners, policy analysts, 
city and county engineers, and 
commissioners in Dakota County or 
other counties to help assist them in 
urban planning. The advantage of 
planning on a watershed basis proves 
most beneficial to the stream as a whole 
if development is concentrated, while 
other areas are left as open space. 
Another aspect of watershed planning 
provides an inventory of important 
natural resources throughout the 
watershed and implementing setback 
distances from critical resources. The 
findings and methods can also be 
generalized toward anyone that has an 
interest in land use planning and 
assessment. 
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