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Abstract 
 
Currently emphasis on accurate and timely collection of fisheries data generates a need for 
investigation into advanced techniques in bathymetry, including recent refinements in 
Geographical Information Science (GIS) and Global Positioning Systems (GPS).  The study area 
for this project was the east basin of Lake Winona, a small Mississippi River floodplain lake in 
Winona, Minnesota USA.  Lake Winona was the site of recent dredging operations aimed at 
decreasing littoral zone areas to reduce plant growth and stunted fish populations.  To assess 
potential effectiveness of dredging operations, bathymetric data were collected with a Garmin 
depthfinder and GPS unit, and interpolation techniques to produce lake morphometric 
characteristics (splining, kriging, and inverse distance weighting) were compared within ESRI’s 
ArcMap 9.0.  All interpolation methods produced similar outputs for cross validation statistical 
comparisons, although kriging produced the best predictive output of actual bathymetric 
contouring for Lake Winona.  Calculation of morphometric characteristics from derived 
bathymetric information showed significant changes in Lake Winona compared to historic 
accounts.  Lake dredging was successful in reducing littoral zone areas by 30 percent and 
increasing lake volume by 28 percent, while increasing the mean depth by 60 percent (from 2.6 
feet to 4.3 feet).  Habitat for stunted fish populations was substantially reduced.  Today, 
information from this project is being used to assess the feasibility of further bathymetric studies 
and to refine management approaches to improve the Lake Winona fishery. 
 
Introduction 
 
Assessing the impacts of human interaction 
and development on the environment is 
often an arduous task.  Information acquired 
quickly and accurately before information 
changes can be vital to implementation of 
appropriate management plans.  Accurate 
bathymetric lake maps can be an important 
resource to area fish and wildlife managers, 
along with other stakeholders such as; 
fisherman, hunters, the general public, and 
area natural resource planners. 

Within the past 10 years, the 
technological capability for inland 
bathymetric mapping has exploded, yet new 

techniques remain largely unexploited due 
to expense and the lack of research into 
proper techniques.  Such innovation includes 
using Global Positioning Systems (GPS) for 
accurate mapping in combination with 
Geographical Information Science (GIS) for 
computer analysis. 

Lake Winona is a 315 acre lake 
situated in the heart of Winona, MN (2000 
census population 27,000+).  Lake Winona, 
a hyper-eutrophic urban lake, is split into 
two sections by a major city thoroughfare.  
Approximately two thirds of the lake 
volume lies in East Lake Winona (215 
acres), whereas the remaining one third of 
the volume lies in West Lake (100 acres). 
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Negative factors such as rain and 
fertilizer runoff, along with sedimentation 
from storm sewers are problematic more 
often with urban lakes such as Lake Winona. 
In an effort to control weed growth, and 
ultimately control stunted game fish, an 
extensive dredging project was conducted 
on East Lake Winona from 1999 to 2001.  
The goal of the project was to remove 
approximately 1.3 million yards³ of 
sediment within an 80 acre area of the lake 
(Fremling et al, 1990). 

The development of new techniques 
using GIS in conjunction with GPS 
technology for analysis will allow area 
ecological managers to obtain current and 
accurate bathymetric information for Lake 
Winona.  This allows decision-makers to 
construct and evaluate management plans in 
a fraction of the time and expenditure as 
previously required.  To assist with the 
development of new bathymetric techniques, 
this paper will investigate the process of 
using bathymetric data collection techniques 
which differ from traditional methods.  I 
used GPS/GIS techniques to quantitatively 
and qualitatively compare interpolation 
techniques and to produce a quality 
bathymetric map for current and future 
comparisons needed for the fisheries 
management of Lake Winona.   
 
Methods 
 
Study Area 
 
The area of interest for this study was East 
Lake Winona, a eutrophic 215 acre urban 
lake situated in the heart of Winona, 
Minnesota.  Lake Winona is split into two 
basins by a major city thoroughfare, 
dividing approximately two thirds of the 
lake volume in the east basin known as East 
Lake Winona, and the remaining one third 
of the approximate volume within the west 
basin known as West Lake Winona.   

 Lake Winona’s state is of concern to 
the local community due to the long history 
of troubled management concerns.  Recent 
management solutions to control weed 
overgrowth and stunted fish populations 
included the recent dredging project 
undertaken between 1999 and 2001.  This 
dredging project was done in an effort to 
increase the mean depth and reduce the 
widespread aquatic vegetation beds that 
were being used by overabundant 
populations of stunted sunfish (Fremling et 
al, 1990). 
 
Data Collection Timeline 
 
Three different datasets were obtained from 
Lake Winona for comparison and analysis 
by this study.  Data for East Lake Winona 
was collected in November of 2004, while 
West Lake Winona and an East Lake 
Winona Validation data (to be referred to as 
“East Validation” from this point forward) 
were collected in April of 2005. 
 
Equipment operation and survey design 
 
The Garmin 168 Sounder, mounted on a 14 
foot v-hulled boat, was utilized for data 
collection.  The Garmin 168, is a WAAS 
(Wide Area Augmentation System) enabled 
chart-plotting receiver and depth finder and 
is equipped with a 200 kHz, 20˚ transom 
mount transducer.  Surveys were conducted 
on calm days to minimize pitch and roll of 
the boat which can affect the accuracy of the 
sonar signals and accurate readings 
(Leonard, 1997). 

Independent test trials found RMS 
values ranging between 4 – 6 meters and 
rarely above 7 meters, while position 
dilution of precision (PDOP) ranged from .5 
– 1.5 and a high of 2.1.  RMS and PDOP 
range values consistently fell within unit 
specifications for WAAS (Garmin Inc, 
2002) as noted in the units literature.  This 
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literature indicates the goal for the unit is to 
“provide reliable signals with an accuracy of 
seven meters (21-22 ft), both horizontally 
and vertically, 95+% of the time.” 

To maximize mass point data 
collection along with efficient data 
collection, transects were spaced 30 meters 
apart and data were collected by the internal 
GPS data logger every 0.01 nautical miles 
(18.52 meters).  Since the predictive 
accuracy of the interpolated surface is 
dependent on the intensity of data 
(McConville, 1995), transects were designed 
on a systematic grid along parallel transects, 
perpendicular to the longest shoreline for 
East and West Lake Winona, and parallel to 
the longest shoreline for East Validation. 

Boat speed during surveys ranged 
from 3-4 knots when traveling along the 
course of a transect and between 2-3 knots 
when traveling between transects as 
suggested by Valley (2005). To avoid 
damage to the boat and instruments, the 
nearest transect course traveled to shore was 
one boat length away.   

To test the accuracy of sonar depth 
measurements, 20 random test points were 
obtained upon completion of the main 
surveys.  Test points for comparison were 
captured at random locations with a 20 foot 
survey rod from an anchored boat and 
compared to the Garmin 168 sonar depth 
reading.  

The internal track logger within the 
Garmin 168 unit captured all information 
and was downloaded in the NAD83 map 
datum.  Sample sizes for collected point data 
information throughout the entire stretch of 
both basins resulted in 803 points for West 
Lake Winona, 1342 points for East Lake 
Winona, and 1385 points for East Validation 
study.  Data was transferred between GPS 
and a computer through use of the 
Minnesota Department of Natural Resources 
Garmin extension for use with ESRI’s 
ArcMap 9.0 Geostatistical Analyst extension  

Surveys from this project were 
compared to data derived from surveys 
conducted in 1985 (predredging of Lake 
East Lake Winona) and 2002 (post dredging 
of East Lake Winona) with both of these 
surveys developed using traditional 
bathymetric techniques. These traditional 
survey techniques used “line of sight” 
techniques and consisted of traveling 
transects by boat between visual landmarks 
on the shoreline and recording depth 
measurements from an electronic fishing 
depth finder at a specified time interval.  
Once collected, depth information was 
transferred to paper and contours were hand 
drawn at logical locations to depth 
information using a polar planimeter. 
 
Geostatistics 
 
Geostatistics is an applied form of statistics 
which utilizes a spatial component and 
assumes that all values in a study area are 
the result of a random process with 
dependence (ESRI, 2004).  The 
geostatistical process of finding data values 
for unknown locations between observed 
data locations is known as interpolation.  
Through interpolation, a surface can be 
created that incorporates the statistical 
properties of the measured data, and for 
some methods, produces not only prediction 
surfaces but also error or uncertainty 
surfaces, providing an indication of how 
good the predictions are (ESRI, 2004).  
Interpolation is dependant on auto-
correlation, assuming some relationship 
between distance and direction of known 
data values. 

While all interpolation methods rely 
on the similarity of nearby data points for 
creation of output surface models, the 
process for determining interpolated values 
can be quite different.  Two different groups 
of interpolation methods exist; deterministic, 
which utilize mathematical functions, and 
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stochastic methods which utilize both 
mathematical and statistical functions to 
determine predicted surface values. 
 
Interpolation 
 
Deterministic interpolators include a group 
of surface prediction methods which assign 
values to locations based on the surrounding 
measured values.  From the measured 
values, specified mathematical formulas are 
employed that determine the extent of 
similarity (e.g., Inverse Distance Weighted) 
or the degree of smoothing (e.g., Radial 
Basis Functions or Splining) (ESRI, 2004).   
 Inverse distance weighted (IDW), a 
deterministic interpolator, relies on local 
variability, assuming data values nearby are 
more likely to be similar than those further 
away.  Calculated weight for surrounding 
points within IDW are proportional to the 
inverse distance raised to the power value, 
therefore as distance increases, weights 
decrease rapidly (ESRI, 2004). 

IDW is an exact interpolator, forcing 
the predicted surface model through known 
data points.  For IDW surface model 
calculation, prediction values are confined 
between the minimum and maximum known 
values, placing greater weight on observed 
values.  Greater emphasis on observed 
values accounts for small scale variation,  
but also may create sensitivity for clustering 
and producing “bulls-eyes” around data 
points in high gradient areas (ESRI, 2004). 
IDW requires no assumptions and results are 
solely dependent on the distance to the 
prediction location for calculating 
interpolation values.  

Radial basis function (e.g., RBF or 
splining), is also an exact interpolator, but   
unlike IDW can predict values above the 
maximum and below the minimum 
measured values (ESRI, 2004).  RBF is 
unique in which it applies a “rubber sheet” 
through all known points, while minimizing 

slope curvature.  RBF models are used for 
calculating smooth surfaces from a large 
number of data points where surfaces vary 
gently.  This type of interpolation is 
inappropriate where there are large changes 
in the surface values within a short 
horizontal distance and/or when the sample 
data is prone to error or uncertainty (ESRI, 
2004). 
 Within RBF, there are two functions 
which will be considered; completely 
regularized and spline with tension.  The 
degree of smoothness parameter contributes 
to slight differences between RBF functions, 
which are often not significant, but may be 
tested through cross validation (ESRI, 
2004). 
 Kriging and other stochastic 
interpolation methods utilize mathematical 
and statistical functions to create surface 
models.  Stochastic methods use 
autocorrelation as well as complex 
geostatistics, such as variograms to create 
prediction maps and the resulting 
uncertainty assessment.   

Variograms, which include 
semivariograms and covariance functions, 
(to be discussed later) are used to 
graphically quantify the autocorrelation 
relationship.  Autocorrelation theory 
suggests that nearby data pairs should have 
smaller differences than distant data pairs.  
A property of kriging is that it tends to under 
predict large values and over predict small 
values (ESRI, 2004). 

 When comparing weighted 
averages, kriging is the best unbiased 
predictor whether or not data are normally 
distributed and when the data are normally 
distributed, it is the best unbiased predictor 
(ESRI, 2004).  Since kriging requires the 
greatest amount of user input (as compared 
with other interpolation methods), 
assumptions for data validity hold a greater 
importance. Within kriging, several methods 
exist, but only two, both with measurement 
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error models (ordinary and universal) will be 
examined here. 
 
Assumptions 
 
To assess the effectiveness of various higher 
order interpolation methods such as kriging, 
assumptions of normality and stationarity 
are required for dependency rules to 
properly formulate predictions and assess 
uncertainty.  Previous work (Rossi et al, 
1992) recognized this need for a clear 
description of the underlying theory and 
assumptions for calculating interpolation 
models within geostatistics.  

Since kriging methods rely on the 
normal distribution of data for accurate 
surface prediction, the assumption of normal 
distribution or normality, is desired before 
advanced interpolation may begin.  Normal 
(i.e. Gaussian) models are convenient 
because they are classified not only by two 
parameters, the mean and the variance, but 
by their characteristic bell shaped symmetry 
(Journel, 1989).  An appropriate log 
transformation or box-cox transformation 
may be performed on a data set to correct 
for skewness away from a normal 
distribution. 

 A fundamental assumption of 
geostatistical methods is that any two 
locations that are a similar distance and 
direction from each other should have 
similar difference squared values, a concept 
referred to as stationarity.  The stationary 
principle is important because it relies on the 
theory that all data come from distributions 
that have the same variability and hence 
suitable replication (ESRI, 2004).   

The assumption of stationarity may 
be validated by analyzing the semivariogram 
and covariance, functions of higher order 
interpolation surface modeling such as 
kriging.  Detailed discussion of the 
variogram structure is offered by Isaaks and 
Srivastava (1989).  

Data Analysis 
 
Analysis of univariate and bivariate raw data 
statistics can lead to insight into trends and 
relationships within data and is therefore the 
first step before analyzing any geostatistics 
(Tukey, 1977), (Rossi et al, 1992).  Raw 
data of interest for this analysis included; 
West Lake and East Lake Winona, along 
with an independent validation data set for 
East Lake Winona.   
 Using Exploratory Spatial Data 
Analysis; a histogram (univariate) may 
identify the mean, variance, skewness and 
kurtosis values, while a General Quarter-
Quantile and Normal Quarter-Quantile show 
comparisons between a variable and log-
normal data and then between corresponding 
data sets. Transformations and trend 
removal can help justify and satisfy the 
assumptions of normality and stationarity. 
(ESRI, 2004) 

 The Trend analysis helps to identify 
the presence or absence of a trend, which 
may aid in explaining some physical process 
(i.e. pollution or wind direction).  Trends are 
nonrandom (deterministic) surface 
components, accounting for large-scale 
variation (ESRI, 2004).  Trend analysis 
should always be investigated, since 
interpolation, in the presence of the trend 
can bias results by skewing the interpolation 
in a particular direction. (Isaaks and 
Srivastava, 1989) (Valley, 2005).  Such 
problems introduced by trend include island 
contours around data points and weaving 
contours between high and low data points 
(Krum and Jones, 1992). 
 
Model Parameters 
 
When constructing an interpolated surface  
model, a variety of parameters are involved, 
depending on the complexity of the model 
and the degree of decision making.  
Interpolation methods such as IDW and 
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RBF require fewer decisions or parameters 
to manipulate in comparison to kriging 
methods.  Parameters important for 
determining the validity of the surface 
model include (which may vary by model); 
surrounding point weight, neighborhood 
search, and anisotropy.  IDW and RBF both 
have similar parameters for determining the 
small scale variation involved within the 
dataset.  Kriging interpolation methods 
utilize functions such as semivariogram and 
covariance to assess the weight given to 
surrounding data points, based on distance 
and direction. 

Finding the most suitable weight for 
IDW or RBF is accomplished easily in 
GeoStatistical Analyst 9.0 through the 
“optimize power” feature.  With this feature, 
the GeoStatistical Analyst will try to 
minimize the root-mean-square prediction 
error (RMS), a summary statistic 
quantifying the error of the prediction 
surface.  With the selected parameters, the 
GeoStatistical Analyst tries several different 
powers to identify the power that produces 
the minimum RMS.  A curve is fit 
(quadratic local polynomial equation) to the 
points and from the curve, the power that 
provides the smallest RMS is determined as 
the optimal power (ESRI, 2004).  When 
determining the influence of surrounding 
data points (i.e. neighborhood) for weighing 
interpolation calculations, careful analysis of 
the involved parameters is essential.   

The neighborhood search is used to 
define the neighborhood shape and the 
constraints of the points within the 
neighborhood that will be used in the 
prediction of an unmeasured location. 
Neighborhood search sizes should be large 
enough to capture the variability in the data, 
but small enough to avoid capturing distant 
points, which create reduces spatial auto-
correlation with the prediction location, 
hence jeopardizing the appropriateness of 
stationarity (Isaaks and Srivastava, 1989). 

 Cross Validation and Validation  
 
Cross validation, a geostatistical tool, is an 
important means for discerning differences 
between interpolation methods.  Cross 
validation is a process that uses all the data 
to estimate the trend and autocorrelation 
models by removing one data point at a 
time, predicting the value using the rest of 
the data.  Cross validation helps to 
determine the appropriateness of the 
parameters surrounding the model and the 
interpolation method. 

Cross validation provides an array of 
statistical and graphical outputs for 
comparison of different parameters before 
surface model creation, allowing for 
manipulation of parameters if needed.  
Among the prediction error output statistics 
for cross validation of deterministic and 
stochastic interpolation methods is the mean 
prediction error (MPE) and root-mean-
square (RMS). The RMS statistic is a 
measurement of how close the predicted 
values are to the measured values, in which 
smaller values are preferred.  The mean 
prediction error statistic (MPE), is a measure 
of the bias within the model, which will 
produce values centered around zero for 
unbiased models. 
 Stochastic methods provide 
additional statistics as an extra measure of 
uncertainty and potential error for the 
prediction model.  The kriging standard 
error, a statistical measure of uncertainty in 
the prediction, is calculated by the square 
root of the kriging variance.  RMS and MPE 
values can be “standardized” to account for 
scale dependence, by dividing the RMS and 
the MPE each by the standard prediction 
error to produce RMS standardized and 
MPE standardized.  The RMS standardized 
is a measure of variability in addition to the 
kriging standard error, in which RMS 
standardized values will underestimate the 
variability when greater than one and 
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overestimate variability where values are 
less than one (ESRI, 2004). 

The use of cross validation 
prediction error statistics can be a beneficial 
tool for finding differences among 
interpolation methods, however may fall 
short of clear determination for finding the 
“optimal” interpolation method.  In such 
situations, Pearson’s correlation coefficient 
and r squared values calculations may be 
beneficial for interpolation model deter-
mination (Isaaks and Srivastava, 1989).   

The Pearson correlation coefficient is 
useful for determining linear relationships 
between an independent variable (i.e. 
observed values) and dependent values (i.e. 
prediction values).  Positive Pearson values 
near 1 indicate a strong relationship between 
them, while negative Pearson values indicate 
an inverse relationship.  The r square is a 
similar statistical measure, calculated by 
squaring the Pearson value, explaining the 
fraction of the variance not clarified by the 
regression. 
 The process of validation, another 
useful tool for model suitability, is 
conducted with an independent data set from 
the modeling process through a separate data 
collection or creation of subset from the 
original dataset.  Validation creates error 
prediction statistics similar to those for cross 
validation, and is beneficial for assessing the 
validity of the model parameters. 
 
Results  
 
Exploratory analysis indicated positively 
skewed data for all three data sets, requiring 
a lognormal transformation to satisfy the 
first assumption of normality.  The log 
transformation in a histogram of 10 classes 
did significantly impact the orientation of  
the histogram graph and consequent makeup 
of univariate statistics, the mean and 
median. Table 1 illustrates changes in mean, 
median, and standard deviation values 

before and after log transformation. 
Statistical mean and median data values in 
close proximity are characteristic of normal 
distribution, thereby satisfying the normality 
assumption.   

The average squared deviation of all 
values from the mean, referred to as the 
variance, and the square root of the variance, 
referred to as the standard deviation, are 
important for measuring the spread of values 
around the mean of a frequency distribution.  
Smaller values of variance and standard 
deviation indicate tighter clusters of 
measurement around the mean (ESRI, 
2004).  Between standard deviation and 
variation statistics, standard deviation is 
considered a better measurement statistic, 
since variation is negatively effected by 
erratic high values (Isaaks and Srivastava, 
1989).  
 The coefficient of skewness for 
Gaussian distributions is a measure of the 
symmetry of distribution after log 
transformation, where perfect symmetric 
distributions the skewness equals zero 
(ESRI, 2004).  The coefficient of  skewness 
after log transformation for all three data 
sets was calculated at 1.236 (West Lake), 
0.1784, (East Lake) and 0.1747 (East 
Validation).  Positive skewness values for 
West Lake imply positively skewed data 
which results from the high percentage of 
smaller values (i.e. shallow depth values) 
within the data set.  East Lake and East 
Validation, analogous data sets, exhibit 
skewness values very near zero, suggesting 
virtually near symmetry in the frequency 
distribution after log transformation.  
 Detrending for each of the three data 
sets did not exhibit any sort of trend when 
the 1st order polynomial (linear behavior) 
was applied through the projected points.  
However, a 2nd order polynomial (quadratic) 
fit did demonstrate evidence of trend, 
exhibiting an upside down “U” shape in East 
Winona and Validation data sets.  This 
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polynomial fit behavior is the result of the 
trending process finding abnormal behaviors 
within depth information and indicates the 
presence of trend in the northeast to 
southwest direction of the lake.  Further 
examination of the unusual linear trend 
behavior within East Lake and Validation 
data sets was attributed to the abnormal 
bathymetric points created to the dredging of 
the lake along this region.   

The second order polynomial applied 
to the West Lake Winona exhibited a right 
side “U” shape on the same northeast to 
southwest direction, indicating a trend, not 
in the northeast to southwest direction, but 
in the northwest to southeast direction.  This 
abnormal trend behavior can be attributed to 
West Lake Winona being very shallow with 
the exception of a confined, but deep area 
along the southeastern end of the lake.  

To create a consistent search 
neighborhood, 32 neighbors were used 
(except for kriging, in which 64 neighbors 
were used) for calculation along with a 
standard location (X = 609131.7, Y = 
4876923), which for consistency was picked 
arbitrarily in the middle of the lake.  For 
IDW and RBF, differences in anisotropy 
were tested and found to be negligible.  

Some variation, albeit minor, did 
exist for comparison among interpolation 
methods.  All methods statistically (RMS, 
MPE, and where applicable, RMS 
standardized) produced a quality output  
surface.  RMS values, a measure of the 
paired relationship between observed and 
measured values, indicated greater accuracy 
with lower RMS values, which varied from 
3.74 with RBF regularized spline to 3.92 
with IDW.  RMS values for the other 
interpolation methods used here fell between 
these RMS values for IDW and RBF 
methods. 
 Another measure of data variability 
is the mean prediction error (MPE), which is 
a measurement of data bias within the 

Table 1. Presence and absence of log transformation 
in a histogram distribution for all Lake Winona data 
sets. 

 
prediction surface model.  MPE values, 
when unbiased, exhibit the tendency to 
center around a value of zero, ensuring the 
model chose the most appropriate prediction 
value.  Biased data, when not appropriately 
checked, may inappropriately skew away 
from a “true” data value. 

MPE values for all methods 
exhibited minimal bias for the predicted 
surface.  MPE values for all interpolation 
methods measured included; IDW (-0.006) 
and RBF (regularized, 0.019 and spline with 
tension, 0.023), which were slightly less bias 
than kriging values (ordinary, -0.112 and 
universal, -0.049).  

Since the MPE value is dependent on 
the scale of the data, kriging models provide 
a better representative of the MPE and the 
standardized MPE (the MPE divided by the 
kriging standard error (i.e. the square root of 
the variance prediction)).  The standardized 
MPE values for ordinary (-0.020) and 
universal (-0.041) fall much closer to MPE 
values for other models, rather than MPE 
values for kriging.  Therefore, when using  
standardized MPE values for kriging in 
comparison with MPE values for IDW and 
RBF, all calculated models exhibited low 
variability. 
 Examination of Pearson correlation 
coefficient and r square values (Table 2) 
between observed and predicted values 
showed virtually no difference between 
   

Transformation Mean  Median Std Dev 
West 1.62 1.39 0.62
East 2.42 2.2 0.73
Validation 2.4 2.2 0.83
       
No Transformation Mean  Median Std Dev 
West 6.39 4 5.4
East 14.65 9 10.47
Validation 15.32 9 11.96
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Table 2. Pearson Correlation Coefficient and r 
squared values for all interpolation methods. 

 
interpolation methods.  Further examination 
of Pearson correlation coefficient and r 
square statistics did show strong similarities 
between observed and predicted values for 
all interpolation methods. 
 The East Validation data set was 
useful for assessing the protocol of the 
parameters used to build the original model, 
using an independent data set.  For a valid 
set of surface model parameters, the 
validation data set should yield prediction 
error statistics similar to those produced in 
cross validation.  MPE values (Table 3) for 
validation data departed slightly from their 
desired direction (zero) indicating greater 
bias in the data.  RMS values (Table 3) 
increased slightly away from zero indicating 
a greater difference between observed and 
predicted values.  Such indicated variation 
between cross validation and validation 
prediction error statistics signify the 
incorporation of small scale variation within 
the original surface model.    
 With each of the six interpolation 
output models calculated, a derived vector 
output feature class produced morphometric 
statistics for each model.  Using the 
summary statistics from the raw data, the 
known depths of East Lake Winona ranged 
from 0 to 40 feet in depth, creating 8 depth 
classes at 5 foot intervals.  Calculation of 
segment area for each depth interval in 
relation to those deeper depth intervals was 
useful for determining the change of surface 
area. 

 From calculating to total segment 
area, it was determined that the area of East 
Lake Winona was 905829.95m² compared 
to 783120.31m² found in 1985 and 2002.  
Differences in area calculations are the 
result of different shoreline maps used in 
1985 and 2002. Recent Farm Service 
Agency (FSA) air photographs were utilized 
in 2004, for the greatest accuracy in 
shoreline delineation.  To correct for 
differences in total area, relative area and 
relative volume were used for all 
experimental calculations here. 
  Calculations for relative segment 
area were conducted among all six 
interpolation models conducted among all 
six interpolation models for comparison 
with bathymetric survey information 
conducted in 1985 and 2002.  Comparison 
of segment area and segment volume 
calculations for all surveys revealed 
substantial depth and volume changes within 
the littoral zone from dredging operations.  
 Hypsographic curve calculations 
illustrated littoral zone segment area 
reduction from 90% in 1985, to 63% in 
2004, corresponding to similar results by 
Mundahl (2001) using traditional surveys.  
Hypsographic curve calculations for 
segment volume within the littoral zone 
illustrated substantial reduction from 92.6% 
of total lake volume in 1985 to 64.3% in 
2004, corresponding as well results from 
Mundahl (2001). 
 The dredging project had drastic and 
substantial effects on the overall mean depth 
throughout the east basin of Lake Winona.  
The average calculated mean depth of 4.4 
feet shown by this study compared favorably  
with the mean depth of 4.1 feet in 2002 and 
indicated an approximate 60% change in the 
mean depth in 1985, previously 2.6 feet. 

Testing accuracy of sonar depth 
readings using a T-Test, paired sample for 
means, revealed depth measurements with 
surveyors rod and Garmin 168 were 

  
Pearson 

correlation r squared 
IDW 0.93 0.86 
Ordinary Kriging  0.93 0.87 
Universal Kriging  0.93 0.87 
RBF- Regularized  
Spline 0.93 0.87 
RBF- Spline with 
Tension 0.93 0.87 



10 

 

 
statistically similar (n=21, r=0.9838). 
 
Discussion 
 
Model Decision 
 
Confirmation of assumptions and general 
trend relationships, where kriging was 
concerned, did appear to prove useful for 
calculating an accurate and unbiased surface 
model.  General reasoning for trends is 
answered by explainable physical processes 
such as the abnormal depth behavior in the 
northeast to southwest direction caused by 
dredging in East Lake Winona.  With a 
lognormal transformation applied to satisfy 
normality assumptions, kriging models 
produced unbiased results only after 
detrending removed a 2nd order polynomial 
trend and removed an abnormal depth 
behavior for the modeling of the final 
surface model. 

Globally, little bathymetric variation  
occurred throughout the floor of East Lake 
Winona in each of the interpolated surface 
method outputs.  All interpolation methods 
created similar drop offs (due to dredging) 
and gradual increases in depth towards shore  
along similar areas of the lake.  The global 
similarities among methods were correlated 
to the similarity of generated statistics for 
each method. On a smaller scale, some 
qualitative variation did exist across all three  
interpolation methods.  The IDW surface 
model, based on the extent of smoothing,  
produced “bulls-eye” patterns,  

 

 
especially along higher gradient areas (due 
to dredging) and connected similar areas 
together.  Generally such bulls-eyes patterns 
such as produced here are not characteristic 
of the true bathymetry and are therefore not 
typically featured in bathymetric maps.  
Thus even though IDW produced 
respectable statistics for both cross 
validation and validation, it was not 
considered a suitable final surface model 
choice. 

The RBF methods, based on the 
degree of smoothing, are also drastically 
affected by these same gradient changes.  
RBF methods typically produce high error 
or uncertainty in areas where gradient 
abruptly changes due to the rubber sheeting 
applied to the data.  In many areas RBF 
method here tried to “connect the dots” of 
similar areas, creating connected “coves” of 
similar depths.  RBF statistically produced 
the highest quality prediction statistics, 
although the types of features being modeled 
must account for part of the decision 
making, ruling out both RBF and IDW for 
this model. 

Kriging models, although over- 
whelmed by parameter decisions, also 
included an important aspect of prediction 
error.  It is important to note that kriging 
models require considerable understanding 
of the aspects of the model which have 
significant impacts on the output.  
Additional assumption requirements  
(stationarity and normality) were easily 
satisfied through log transformation and 

 MPE (CV)* MPE (V)* RMS (CV)* RMS (V)* 

Ordinary Kriging -0.112 
 

-0.458 3.837 4.683 
Universal Kriging -0.049 -0.395 3.797 4.576 
IDW -0.006 -0.393 3.928 4.683 
RBF- Regularized 
Spline 0.019 -0.362 3.741 4.439 
RBF- Spline with 
Tension 0.023 -0.351 3.792 4.427 

Table 3. Comparison of Cross Validation and Validation prediction statistics. 
*(C) denotes Cross validation, (V) denotes Validation 
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inspection of the derived variogram for 
proper autocorrelation around the weighted 
least-square fit line.  
 Pearson correlation coefficient and 
corresponding r square values were only 
minimally useful for determining between 
interpolation prediction models.  All 
interpolation methods displayed strong 
positive correlation between observed and 
predicted values.  For true statistical 
correlation assessment, multiple datasets for 
comparison would be required.   

Prediction error maps for kriging 
surface output models exhibited minimal 
error output within the study area, although 
revealing potential error at the outer 
boundaries (i.e. shoreline).  Information at 
such outer boundaries in most cases should 
be considered known (i.e. < 5 feet, within 
the smallest depth interval), since these 
areas represent sections of the transect 
between the shoreline and the end of the 
transect too shallow for travel by boat.  
Situations such as this require additional 
knowledge of the study area for external 
influencing factors.  As with any study, 
there is no substitute for understanding the 
various factors affecting the data and the 
resource being sampled or the collection of 
additional data points.   
 Caution should be stressed when 
using interpolated values, since interpolated 
values are usually less variable than the 
original data values and make the contoured 
surface appear smoother.  Although 
smoother surface models are more visually 
aesthetic, a smoother surface understates the 
variability and may be misleading from a 
qualitative point of view (Isaaks and 
Srivastava, 1989).   In terms of bathymetric 
measurement for East Lake Winona, 
comparison of universal and ordinary 
kriging produced similar results (more than  
other interpolation models), both in 
prediction statistics and of output map 
features. Universal kriging compared with 

ordinary kriging appeared to contain less 
bias and lower RMS values in cross 
validation and validation statistics, thus the 
more qualified surface modeler. In choosing 
a suitable optimal model for modeling a 
final surface, universal kriging did stand out 
when all aspects (cross-validation, 
validation, and output product) were 
examined.   
 
Lake management and survey feasibility   
 
Development of the most accurate unbiased 
interpolated surface output is important for 
calculation of other statistics within the lake 
and comparisons with previous bathymetric 
surveys.  Calculated statistics for area and 
volume for 8 depth classes at 5 foot intervals 
indicate significant change from the current 
East Lake Winona bathymetric model and 
the pre-dredging 1985 bathymetric map.  
Additionally, similarities exist among 
location of depth interval and relative 
morphometric calculations from this study 
and traditional studies done by Mundahl 
(2001).  
 Similarities for preparatory field 
work (1 day) and collection of data (1 day) 
for traditional and the advanced techniques 
used here are relatively similar for similar 
size lakes (Zytkovicz, 2005).  Generally 2 
personnel are needed to conduct traditional 
techniques as opposed to 1 with newer 
techniques, creating additional cost 
differences between bathymetric techniques.    
 However, great differences reside in 
post processing of data between techniques. 
Post processing with traditional methods, 
using a planimeter may take up to 8 hours or 
more, while an hour or less time of post 
processing for advanced techniques. 
Although this survey and the 2002 survey 
produced similar results for map features 
and morphometric calculations, it would be 
expected that the GPS methods would 
produce a higher quality map for larger  
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lakes where GPS capabilities better track 
transect paths. 

Previous bathymetric surveys 
(Leonard, 1997) with similar advanced 
techniques noted larger bodies of water 
(2000+ acres) did show drastic differences 
in map output quality and cost per unit effort 
over traditional techniques with up to 274 
hours less time and a 98% cost savings.   
Although lakes typically do not exhibit a 
great deal of bathymetric variation, 
advanced surveys provide a reliable method 
for quickly processing survey information in 
lakes where frequent sedimentation occurs, 
or as in the case of East Lake Winona, to  
monitor the potential for slumping of dredge 
areas.  
 
Dredging analysis  
This survey and the prior 2002 bathymetric 
survey helped to determine if the dredging 
goals (Fremling et al, 1990) of decreasing 
mean depth within the littoral zone and 
increasing the lake volume for dissolved 

 
 
oxygen were achieved.  The creation of 
steep drop offs near the lake’s  north-
northwestern shoreline and removal of 
expansive shallow areas were beneficial for 
eliminating extensive weed beds used as 
habitat for overabundant Sunfish 
populations.  Loss of widespread aquatic 
vegetation habitat provides greater 
opportunity for Largemouth Bass 
(Micropterus salmoides) and other predatory 
fish to forage on prey species.  Comparison 
of littoral zone change areas from this study 
and 1985 surveys (Figure 1) show the  
extent of the dredging and the general areas 
in which new habitat was created. (It should 
be noted that since different techniques 
produce varying amounts of generalizations, 
the two maps should not be expected to be 
exactly identical).  Shallow areas located 
between dredge holes also provide new 
habitat types in the form of shallow humps 
for fish structure, previously unseen in the 
lake.  
 Goals for the dredging of several  

Figure 1. East Lake Winona Bathymetric Littoral Change (1985-2004). 



13 

 
 
deep holes to 60 feet (Fremling et al, 1990) 
were not noted by this study or by the 2004 
surveys, where maximum depths of 
approximately 40 feet were observed.  
Although creation of greater maximum 
depths was intended, deposits of mud (up to 
20 feet) in many areas complicated 
obtaining these desired depths. 
 Curlyleaf Pondweed (Potamogeton 
crispus) and other common aquatic 
vegetation plague both basins of Lake 
Winona, but the west basin to a greater 
extent, where vegetation growth frequently 
tops out on the surface throughout the entire 
basin.  Since minimal locational changes of  
vegetation growth in deep (>2m) littoral 
zones occurs (Chambers, 1987) (Duarte and 
Kalff, 1990), current vegetation beds in East  
Lake Winona are expected to persist.  Water  
levels within the lake have remained 
consistent, with a maximum variation of less 
than 1.5 feet over the past 10 years 
(Minnesota Department of Natural 
Resources, 2005). 
 
Sources of Error 
 
Error and error recognition is an  

 
 
important aspect of any survey, especially 
with the use of technology.  The use of 
technology can both create error due to 
measuring devices and detection where it 
was previously immeasurable.  Positional 
errors result from discrepancies between the 
observed, measurement location and the 
actual location. In historic line of sight 
methods, slight deviation from transect line 
between visual shoreline locations was 
almost unnoticeable.  With use of GPS 
technology, deviation from the intended 
transect can be quickly noticed and transect 
can be rerun, ensuring high correlation 
between data collection and data mapping.  
 The use of measurement error 
statistics such as RMS and PDOP (Position 
Dilution of Precision) can help determine 
when errors might occur. The RMS error, 
factoring the possibility of distance off 
course, is reliant on the quality of GPS, and 
among other things such as cloud cover and 
satellite locations.  The results from the 
Garmin 168 were satisfactory, never 
calculating an RMS error to be over 7 
meters or a PDOP over 2.1. Understanding 
the GPS unit and its average RMS is 
important when considering transect 

Figure 2. East Lake Winona Prediction Error Map. 
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spacing, such that the RMS error values 
should fall under half the transect spacing.  
 An advantage for use of kriging is 
the ability to calculate error with the 
measurement. Creating a prediction error 
measurement map as part of the surface 
model can help determine which areas error 
was highest, and if the parameters are 
outside the ability of the collection unit.  
Figure 2 represents both transect and 
prediction error surrounding each data point 
within the transect. If the data comes from a 
normal distribution, the true value will be 
within prediction ± 2 times the prediction 
standard errors about 95 percent of the time 
(ESRI, 2004).  Special concern should also 
be taken when using interpolated maps since 
the original error involved in map creation is 
often lost when applied to secondary uses. 
 
Conclusions 
 
Using GPS to collect bathymetry data in 
combination with GIS for analysis of 
interpolated surface modeling proved 
slightly better than traditional bathymetric 
map creation techniques.  The comparison 
of interpolation techniques such as Inverse 
Distance Weighted, Radial Basis Functions, 
and kriging, demonstrated similar modeling 
procedures along with similar qualitative 
and quantitative results.  When comparing 
all interpolation methods, universal kriging 
produced the highest quality statistics and 
graphical output, in addition to error 
checking capabilities, making it the best 
choice given all considerations for modeling 
and lake characteristics. Using the kriging 
model to calculate and compare statistics 
from bathymetry here and surveys of 1985 
and 2002 illustrated that the goals of the 
2001 dredging project to East Lake Winona 
were achieved.  
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