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Abstract 

 

As Geographic Information Systems (GIS) expand, tools for spatial analysis and raster 

processing are in high demand. Open source solutions for GIS can provide users with 

low-cost, generic, and interoperable alternatives to proprietary software. Map algebra is 

uniquely situated to benefit from open source implementations. This study compares map 

algebra tools of the proprietary ESRI ArcPy library and the open source Rasterio library. 

The analysis assesses performance of both libraries in terms of time and memory usage. 

Based on these performance metrics, Rasterio should be considered a suitable alternative 

to ArcPy for some GIS workloads.  

 

Introduction 

 

Advancements in satellite imagery and 

remote sensing technology have given 

rise to large raster datasets that are 

increasingly accessible to GIS users 

(Clewley, Bunting, Shepherd, 

Gillingham, Flood, Dymond, and 

Moghaddam, 2014). As GIS datasets 

expand, tools for spatial analysis and 

raster processing are in high demand. 

Proprietary desktop software has long 

been the standard in GIS analysis. 

Though these systems offer powerful 

analysis tools and algorithms, they are 

not immune to programming, 

processing, and licensing limitations. As 

a result of rapidly changing spatial 

analysis requirements, GIS programs 

need to be adaptive and transparent. 

Software must evolve with the field to 

produce intuitive and dynamic 

applications that accommodate modern 

GIS workloads. 

Free and Open Source Software 

(FOSS) for GIS can provide users with 

low-cost, generic, and interoperable 

alternatives to proprietary software. 

Open source GIS software is multiplying 

due to the Internet and increasingly 

code-literate users, meanwhile the need 

for highly extensible GIS tools has led to 

an increase in the amount of GIS 

software and libraries being developed 

under open source licenses (Steiniger 

and Bocher, 2008). As the open source 

movement grows, it is important to 

examine the implications for proprietary 

software. How does an open source GIS 

solution compare to proprietary analysis 

tools in terms of performance? What are 

the relative advantages and 

disadvantages of choosing an open 

source solution? 

 This study provides a 

comparative analysis of two GIS 

libraries: Environmental Systems 

Research Institute (ESRI) ArcPy and 

Rasterio. ArcPy is a proprietary, closed 
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source, general-purpose GIS library. 

Rasterio is an open source raster-

processing library. This study examines 

the quantitative performance metrics of 

the map algebra tools provided by ArcPy 

and Rasterio. Tests were implemented in 

each library to compare the time and 

memory usage required to complete a 

variety of map algebra operations.  

 

Background 

 

Free and Open Source Software 

(FOSS) 

 

FOSS is a transparent model of software 

development where source code is freely 

shared and can be read, modified, and 

redistributed (Deek and McHugh, 2008). 

This free exchange allows for 

collaboration among programmers and 

researchers and aides in the 

advancement of software (Deek and 

McHugh). This is in contrast to 

proprietary software development in 

which the creation of the source code is 

privatized and licensing restrictions 

usually forbid redistribution or 

modification of code (Deek and 

McHugh).  

Deek and McHugh (2008) cite 

several major advantages of open source 

models over proprietary systems. Open 

software often has the following 

characteristics: 

 Lower direct costs as modifications 

are usually distributed among 

developers via the Internet 

 High portability and lower resource 

utilization 

 More eyes on the code for spotting 

bugs, increasing reliability and 

security 

 Fast-paced development and free 

updates for new software 

These advantages of the open 

source model can provide benefits to the 

diverse community of GIS users, so it is 

not surprising there has been an increase 

in FOSS GIS software downloads in 

recent years (Steiniger and Bocher, 

2008). However, there is still significant 

demand for specialized proprietary GIS 

software (Donnelly, 2010). ESRI 

products, like ArcGIS, corner a large 

portion of the GIS market with 350,000 

clients worldwide (ESRI, 2015). Due to 

the sophistication and longevity of 

ArcGIS tools, it is often used as a 

standard for new GIS analysis software 

(Donnelly, 2010). 

 

Map Algebra 

 

Map algebra accounts for much of the 

raster analysis capabilities of GIS 

software (Mennis, 2010). Map algebra is 

a form of raster analysis that uses 

operators to combine and create raster 

layers (Bruns and Egenhofer, 1997).  

Map algebra implementations consist of 

a set of functions that can take one or 

more raster datasets and apply 

arithmetical and logical operators to 

output a modified raster grid. Figure 1 

shows two examples of map algebra 

operations. Operators such as these are 

common in GIS analysis. For example, 

the units of a raster grid can be 

converted using a formula, such as 

changing the values of a raster from 

degrees Fahrenheit to degrees Celsius. 

 Boolean rasters can also be used 

for analysis. Boolean rasters store two 

values, True and False, or one and zero, 

respectively. They help visualize where 

an element exists and where it does not. 

Figure 2 shows an example of a map 

algebra operation that outputs a Boolean 

raster with values equal to one where the 

slope is greater than ten. 
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Figure 1. Multiplying by a constant grid (left) 

and adding two grids (right). 

 

 
Figure 2. A Boolean grid where areas that are 

True (=1) have a slope greater than 10 and all 

other cells are False (=0). 

 
There is also a set of operators to 

combine Boolean rasters. These include 

and (&), or (|), not (~), and exclusive or 

(^). For example, it may be necessary to 

find the areas where two habitats 

overlap. This would involve using a ‘&’ 

operator on two Boolean rasters to 

determine where the values are True for 

both rasters and essentially multiplies 

the two rasters together. Figure 3 shows 

an example of this type of operator. 

 
Figure 3. A Boolean operation.where areas that 

are shared between both grids are True (=1). 

 

The cells that are equal to one show 

where the two habitat areas overlap.  

As illustrated, map algebra is a 

simple yet powerful way of analyzing 

raster matrices and provides many 

solutions to GIS problems. Map algebra 

is not exclusive to a single domain; it is 

a common GIS task that can benefit 

from an open source implementation 

(Mennis, 2010). Research in map 

algebra thrives under environments 

where new implementations can build 

upon existing algorithms (Mennis). The 

increasing amount of large spatio-

temporal datasets available for GIS 

creates a demand for non-domain 

specific, intuitive, and interoperable map 

algebra processing tools. Consequently, 

Map algebra is uniquely situated to 

benefit from the advantages of FOSS 

GIS tools (Mennis). Understanding these 

advantages guides development of raster 

processing tools and warrants research 

that analyzes functionality and 
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performance with respect to existing 

proprietary software packages that 

dominate the field of raster analysis 

(Donnelley, 2010).  

 

Libraries 

 

ArcPy 

 

ESRI’s ArcGIS exposes many of its 

tools to Python through the ArcPy 

library, including map algebra 

operations. ArcPy contains operators for 

implementing map algebra functions 

through the ArcGIS Spatial Analyst 

extension (ESRI, 2015). ArcPy is a 

Python package that is included with 

ArcGIS proprietary software (ESRI, 

2015). Because the source code is 

closed, it is hard to know what ArcPy is 

built upon, but it requires NumPy. 

NumPy is an open source Python data 

analysis library for performing matrix 

operations (Van Der Walt, Colbert, and 

Varoquaux, 2011). The NumPy package 

provides an array data structure that 

stores elements of fixed size to allow for 

efficient numerical computing (Van Der 

Walt et al., 2011). This makes NumPy 

arrays ideal for calculating raster 

surfaces for map algebra 

implementations. 

 

Rasterio 

 

Rasterio is an open source library 

developed by Mapbox, Inc. for reading 

and writing geospatial raster datasets in 

Python (Mapbox, 2015). Rasterio 

provides a NumPy interface to GDAL 

rasters. The NumPy array can be 

modified and subsequently exported 

using GDAL (Mapbox). GDAL, or the 

Geospatial Data Abstraction Library, is a 

library used for the conversion and 

modification of a variety of geospatial 

data formats (gdal.org, 2015). GDAL is 

licensed by the Open Source Geospatial 

Foundation and can be used to parse and 

process raster data in a variety of 

formats including ArcInfo GRID files 

(gdal.org).  

 

Methods 

 

Implementation of Python Map 

Algebra Scripts 

 

Rasterio and ArcPy were installed on a 

Dell Inspiron 3000 Series i3847 Desktop 

with a 3.2 GHz Intel Core i5-4460 

Processor and 8 GB RAM, running 

Windows 7. ArcGIS for Desktop 10.3 

was installed, including ArcPy, Python 

2.7.8 (32-bit), and NumPy 1.7.1. To 

minimize differences between the 

Rasterio and ArcPy environment, 

Rasterio was installed against the Python 

installation included with ArcGIS. 

However, Rasterio relies on a more 

recent version of NumPy (version 1.9.2) 

than ArcPy, so NumPy was upgraded 

and downgraded when switching 

between libraries. 

Equivalent Python scripts were 

written for ArcPy and Rasterio using the 

same raster dataset. The raster dataset 

used for all tests was a TIFF sample file 

provided by Rasterio (tests/data/ 

RGB.byte.tif from Mapbox, 2015).  The 

functions written for both the Rasterio 

and ArcPy implementation were as 

follows: 

 

1. Open and read a raster file. 

(reading_one_raster.py) 

2. Write a raster to a file. 

(writing_one_raster.py) 

3. Add by a constant. 

(adding_one_raster_by_a_ 

constant.py) 
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4. Subtract by a constant. 

(subtracting_one_raster_by_a_ 

constant.py) 

5. Multiply by a constant. 

(multiplying_one_raster_by_a_const

ant.py) 

6. Divide by a constant. 

(dividing_one_raster_by_a_constant.

py) 

7. A formula involving multiple 

constants. 

(converting_celsius_to_fahrenheit_o

ne_raster.py) 

8. Add two rasters. 

(adding_two_rasters.py) 

9. Subtract two rasters. 

(subtracting_two_rasters.py) 

10. Multiply two rasters. 

(multiplying_two_rasters.py) 

11. Divide one raster by another. 

(dividing_two_rasters.py) 

12. A formula involving multiple rasters. 

(two_raster_formula.py) 

13. Convert to a Boolean raster. 

(converting_to_a_boolean_one_raste

r.py) 

14. Use the ‘not’ Boolean operator. 

(boolean_not_one_raster.py) 

15. Use the ‘and’ Boolean operator. 

(booleanAND.py) 

16. Use the ‘or’ Boolean operator. 

(booleanOR.py) 

17. Use a combination of Boolean 

operators. (boolean_formula.py) 

 

Each program was scripted as simply 

and as similar as possible between both 

libraries. The same raster files were used 

for both implementations. The Rasterio 

program for converting raster values 

from Celsius to Fahrenheit is as follows:  
 

import rasterio 

# --- 

@profile 

def benchmark(): 

    with rasterio.open('R.byte.tif') as src: 

        arr = src.read() 

 

    arr = (arr * 9) / 5 + 32 

 

    with rasterio.open('output.tif', 'w', 

**src.meta) as dst: 

        dst.write_band(1, arr[0]) 

 

benchmark() 

The ArcPy script for the same program 

is similar: 

 
import arcpy 

from arcpy.sa import ApplyEnvironment 

 

arcpy.CheckOutExtension("Spatial") 

arcpy.env.overwriteOutput=True 

 

# --- 

 

@profile 

def benchmark(): 

    src = arcpy.Raster('R.byte.tif') 

    arcpy.env.snapRaster = src 

    dst = ((src * 9) / 5 + 32) % 255 

ApplyEnvironment(dst).save('output.tif') 

 

benchmark() 

 

The ‘#---’ acts as a separator between 

the setup and the statement. The setup 

portion of the code exists above ‘#---’ 

and includes imports and environment 

settings. The code below the ‘#---’ is the 

map algebra function, or the part of the 

code that constitutes the benchmark 

statement. 

 

Benchmarks 

 

When considering software 

performance, efficiency is defined as the 

amount of time and resources used to 

complete a task (Wagner and Scott, 

1995). ArcPy and Rasterio scripts were 

tested for performance by assessing their 

execution time and memory usage. 

 

Execution Time 

 

Execution time is the amount of time it 

takes for a block of code to run. The 

program that runs the benchmarks 

loaded the files as strings and split them 

into setup and benchmark statements.  

A helper function was written to analyze 

the time performance of each map 

algebra function for both ArcPy and 

Rasterio. This function takes three 
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arguments, a statement block (for the 

ArcPy and Rasterio benchmark), a setup 

block (for imports needed by the 

benchmarks), and whether to enable or 

disable garbage collection. 

Garbage collection is used by 

some programming languages to de-

allocate unused memory. While this 

keeps memory usage from growing 

indefinitely, it can occasionally pause 

execution of the program, which can 

affect time performance. For this reason, 

the benchmark programs were evaluated 

both with garbage collection on and 

garbage collection disabled. 

 The helper function used the 

‘timeit’ Python module to time the 

execution of the benchmark. To 

minimize the impact of the import time, 

and instead emphasizing actual 

processing time, timeit can be 

parameterized to execute the statement 

multiple times per setup (Python 

Software Foundation, 2014). This study 

emphasizes running the statement rather 

than the setup because the statement 

performance is more important for the 

majority of users. The helper function 

tells timeit to run the benchmark forty 

times per setup block (n=40). Timeit 

returns the result of executing the setup 

and statements as a single time in 

seconds. To get the average execution 

time of the benchmark, this was 

averaged, and converted to milliseconds 

for easier understanding. Timeit was also 

configured to repeat both the setup and 

the statements (n=40), to returns a list of 

such times. In total, the setup blocks 

were ran 40 times, and the benchmark 

statements for each program were ran 

1,600 times, (40 per setup block 

execution). 

 
def milliseconds(t): 

    return t * 1000 

 

def profile(stmt='pass', setup='pass', 

run_gc=False): 

    n = 40 

    setup = 'gc.collect();' + setup 

    if run_gc: 

        setup = 'gc.enable();' + setup 

    t = timeit.Timer(stmt, setup) 

    return [ 

 milliseconds(x / n) 

 for x 

 in t.repeat(repeat=n, number=n) 

    ] 

 

Memory 

 

The same seventeen benchmarks were 

analyzed using ‘memory_profiler’, a 

Python package for such analysis. It 

outputs a report with line-by-line 

memory consumption, including both 

total memory consumed and incremental 

(how much memory was consumed 

relative to the previous line of 

execution).  

 

Results 

 

Rasterio used less time for all seventeen 

map algebra tasks. The average 

execution time for the ArcPy scripts was 

observed to be significantly slower than 

Rasterio using a pairwise Wilcoxon 

signed rank test (p < .0001). Figure 4 

compares the averaged execution time 

(in milliseconds) of all of seventeen map 

algebra operations combined for each 

implementation. Garbage collection did 

not make a discernable difference for 

either ArcPy or Rasterio aside from 

having a few more outliers for the cycles 

when garbage collection ran.  

The average execution time for 

Rasterio was overall much shorter than 

ArcPy with the exception of reading one 

raster file, which was similar for both 

libraries. In addition to faster execution 

times, the Rasterio programs remained 

consistent in their time usage with little 

variation about the mean. ArcPy’s 

programs varied more with some tasks 

taking much longer than others, namely, 

the Boolean operations (Appendix A). 
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Figure 4. Summary statistics for average 

execution time of ArcPy (left) and Rasterio 

(right) aggregating all seventeen map algebra 

functions for each implementation.  

 

Figure 5 is a visualization of 

every execution time report generated by 

each implementation. Each point on the 

scatter plot represents one trial.  

 
 

Figure 5. Execution times of all trials for ArcPy 

(left) and Rasterio (right).  

 

There were 40 trials for each of the 

seventeen map algebra programs for 

both ArcPy and Rasterio, therefore, there 

are 680 points plotted for ArcPy and 680 

points plotted for Rasterio. 

The areas where the points are 

most dense roughly represent the 

average execution time for the 

implementation. ArcPy shows a broader 

range of execution times with some 

programs’ trials falling well above 400 

and even 600 milliseconds. The only 

ArcPy program that was comparable to 

Rasterio (reading a raster file) is visible 

as a cluster of 40 points at around 10 

milliseconds. Figure 5 shows Rasterio 

trials were not only faster than those of 

ArcPy, but they were more consistent as 

well. 

 Additionally, Rasterio used 

considerably less memory than ArcPy 

for all seventeen of the map algebra 

tasks (Appendix B). For the programs 

that were tested, Rasterio appears to use 

roughly one quarter of the memory that 

ArcPy used. The incremental memory 

usage of ArcPy was higher for every 

task, except reading one raster file. 

ArcPy may be using a software design 

feature known as lazy loading where the 

program waits to load the image until the 

data is needed for an operation. 

However, without access to the code, 

this cannot be confirmed. 

 

Discussion 

 

An open source GIS solution may be 

preferred over proprietary software for 

certain tasks. Although ArcPy offers a 

greater breadth of GIS analysis tools, it 

is not necessarily the most powerful or 

efficient analysis option. This study 

suggests Rasterio is superior in 

execution time and memory usage for 

map algebra. There were also additional 

advantages to Rasterio that were 

encountered during the implementation. 
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Originally, a three-band imagery 

raster was being used in testing. ArcPy 

was not able to process the three bands 

without additional lines of code, but this 

would make the ArcPy scripts use 

different logic than the Rasterio scripts. 

The three-band raster was modified to a 

single-band raster in order to make the 

scripts for both libraries comparable, but 

it is important to note Rasterio was able 

to operate on three bands without 

additional clarification. Additionally, 

Rasterio supports multiple platforms and 

was readily installed for Mac OS X, 

which is advantageous for work 

environments with a heterogeneous IT 

infrastructure.  

 

Does it Scale? 

 

An important advantage of Rasterio and 

many open source technologies is their 

ability to scale costs efficiently. This is 

especially important for large raster 

processing tasks. Many of the algorithms 

used to implement map algebra are 

embarrassingly parallel, that is, the 

workload can easily be distributed into 

multiple processing tasks (Wagner and 

Scott, 1995). The large workloads 

associated with GIS data often encounter 

performance problems and hardware 

limitations (Wagner and Scott, 1995). 

Large-scale raster processing 

implementations are optimized when the 

work can be distributed among several 

computers (cloud computing or parallel 

computing) (Clewley et al., 2014). This 

type of computing is becoming essential 

as GIS systems progress and 

multidimensional datasets expand 

(Wagner and Scott, 1995). Proprietary 

software can make parallelization 

difficult and expensive, therefore, 

modular, open source programs are well 

suited for these processing tasks 

(Clewley et al., 2014). 

 

Implication for ArcGIS 

 

Proprietary software, like ArcGIS, has 

much to gain from examining open 

source GIS platforms such as Rasterio. 

ArcGIS already utilizes many open 

source technologies including Python 

and NumPy. The future of ArcGIS 

software will depend on its ability to 

recognize the changing needs of GIS 

users. Adopting transparent and 

interoperable practices of open source 

technologies may help advance ArcGIS 

tools through collaboration and 

scalability. There is evidence ESRI is 

incorporating these concepts into their 

products. ArcGIS Pro is a recent 

addition to ArcGIS for Desktop that 

offers a modular application for viewing 

and analyzing ArcGIS content (ESRI, 

2015). It features a simple user interface 

with a built-in Python console for 

interactive programming. It also 

encourages sharing of content within 

ArcGIS organizations. ArcGIS Pro 

depends on ArcGIS for Desktop for 

processing. However, the architecture of 

the applications suggests a less 

monolithic approach to GIS tools from 

ESRI going forward. 

 

Why Open Source? 

 

The success of Rasterio and other open 

source GIS libraries will depend on 

continued contributions from the 

community of open source developers. 

Mapbox is gaining popularity among 

GIS users and will likely continue to 

support its products. Rasterio is 

increasing functionality and has already 

improved many of its features during 

this study. Many will still prefer the 
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wide array of analysis options that 

ArcGIS for Desktop offers. However, 

when choosing analysis tools, GIS 

professionals should take a critical look 

at the requirements of their workload 

and be parsimonious about their 

selections.  

 It is important to understand that 

open source and proprietary approaches 

to software development lead to 

different design philosophies. 

Proprietary software development often 

leads to monolithic, large, cohesive 

programs that do a wide array of tasks. 

In contrast, open source software 

development typically leads to programs 

that are modular, interoperable, and 

designed for a specific task. Often, 

focusing on a specific task leads to 

higher quality. Extensibility and 

optimum performance are goals of many 

open source implementations. Both 

approaches have their advantages and 

disadvantages. Projects requiring 

scalable and portable tools benefit from 

open source solutions.  

Rasterio is specifically used for 

raster analysis, but due to the diverse 

community of open-source contributors, 

there are a wide variety of tools 

available for most GIS tasks. For 

example, Fiona is an open source library 

that is similar to Rasterio, but built for 

processing vector data (including 

shapefiles) (Python Software 

Foundation, 2014).  

This study debunks some of the 

myths surrounding open source GIS 

applications; performance, quality, user 

support, and ease of use can be just as 

good with open source software as with 

proprietary software. Depending on the 

task, an open source solution can save 

time and money and should be 

considered as an alternative to 

proprietary software.   
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Appendix A. Execution Time Summary Statistics (in milliseconds). 

 

Implementation Minimum First Quartile 

Median 

Quartile Mean 

Third 

Quartile Maximum 

adding_one_raster_by_a_constant.py     

ArcPy 194.7 197.3 199.1 198.8 200.1 205.1 

ArcPy with GC 194.5 197.3 198.7 198.7 200.4 206.7 

Rasterio 9.3 9.4 9.7 9.8 10.1 11.8 

Rasterio with GC 9.3 9.3 9.4 9.7 10.1 11.1 

adding_two_rasters.py      

ArcPy 209.6 211.3 212.4 212.5 213.4 216.9 

ArcPy with GC 209.2 211.5 213.0 213.0 214.4 217.7 

Rasterio 11.5 11.6 11.8 11.8 12.0 13.0 

Rasterio with GC 11.5 11.5 11.8 11.9 12.0 13.2 

boolean_formula.py       

ArcPy 597.8 600.4 603.0 602.9 604.2 614.2 

ArcPy with GC 595.7 599.8 602.3 602.9 605.1 612.7 

Rasterio 17.5 17.6 17.6 17.6 17.7 17.9 

Rasterio with GC 17.4 17.5 17.6 17.8 17.7 21.4 

boolean_not_one_raster.py      

ArcPy 183.4 186.5 188.1 187.9 189.1 193.4 

ArcPy with GC 182.6 186.6 188.3 188.2 189.6 196.8 

Rasterio 11.6 11.8 12.0 11.9 12.0 12.6 

Rasterio with GC 11.6 11.7 11.8 11.8 11.9 12.5 

booleanAND.py       

ArcPy 441.0 445.1 447.2 447.4 448.6 455.0 

ArcPy with GC 440.1 445.3 447.9 447.5 449.5 452.8 

Rasterio 13.8 13.9 14.1 14.2 14.4 15.0 

Rasterio with GC 13.8 14.0 14.2 14.3 14.4 17.0 

booleanOR.py       

ArcPy 437.6 445.5 447.0 447.3 449.8 454.2 

ArcPy with GC 440.1 446.6 448.4 449.1 451.2 460.6 

Rasterio 13.8 14.2 14.5 14.5 14.7 15.5 

Rasterio with GC 13.8 14.6 14.7 14.6 14.8 14.9 

converting_celsius_to_fahrenheit_one_raster.py     

ArcPy 208.3 210.1 211.4 211.6 212.2 218.0 

ArcPy with GC 207.9 209.5 210.9 211.3 213.0 217.7 

Rasterio 16.5 16.6 16.7 16.8 16.8 17.6 

Rasterio with GC 16.4 16.7 16.7 16.7 16.8 16.9 

converting_to_a_boolean_one_raster.py     

ArcPy 180.0 183.2 183.8 184.2 185.0 189.4 

ArcPy with GC 180.4 182.6 184.0 184.4 185.9 191.2 

Rasterio 11.5 11.7 11.8 11.9 11.9 15.2 

Rasterio with GC 11.5 11.6 11.7 11.8 11.9 12.7 

dividing_one_raster_by_a_constant.py     

ArcPy 199.3 202.4 204.2 204.1 205.3 209.5 

ArcPy with GC 199.3 201.5 202.9 202.7 203.6 209.7 

Rasterio 14.1 14.1 14.2 14.2 14.3 14.8 

Rasterio with GC 14.0 14.1 14.1 14.2 14.2 15.1 

dividing_two_rasters.py      

ArcPy 200.4 201.7 203.5 203.2 204.5 206.4 

ArcPy with GC 200.5 202.7 203.7 203.8 204.8 209.9 

Rasterio 35.9 36.1 36.2 36.2 36.2 37.9 
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Rasterio with GC 35.8 36.0 36.1 36.2 36.1 39.0 

multiplying_one_raster_by_a_constant.py     

ArcPy 192.6 195.7 197.1 197.0 198.3 203.6 

ArcPy with GC 192.6 196.2 197.7 197.6 199.4 202.1 

Rasterio 9.6 10.2 10.4 10.5 10.6 13.7 

Rasterio with GC 9.7 10.2 10.4 10.4 10.6 11.8 

multiplying_two_rasters.py      

ArcPy 211.7 213.8 215.5 216.2 216.8 231.7 

ArcPy with GC 210.8 214.0 215.0 215.2 216.6 219.2 

Rasterio 11.9 12.1 12.2 12.2 12.2 14.0 

Rasterio with GC 11.9 12.0 12.1 12.1 12.1 12.5 

reading_one_raster.py      

ArcPy 10.0 10.1 10.1 10.1 10.2 10.3 

ArcPy with GC 10.0 10.1 10.1 10.1 10.1 10.2 

Rasterio 4.0 4.0 4.1 4.1 4.1 4.1 

Rasterio with GC 4.0 4.0 4.0 4.0 4.0 4.1 

subtracting_one_raster_by_a_constant.py     

ArcPy 204.9 207.0 209.1 209.1 210.6 216.7 

ArcPy with GC 204.4 207.2 209.6 211.0 212.8 229.3 

Rasterio 9.7 10.0 10.3 10.4 10.6 11.2 

Rasterio with GC 9.8 10.0 10.2 10.3 10.4 11.6 

subtracting_two_rasters.py      

ArcPy 216.9 220.2 221.4 221.7 222.7 226.7 

ArcPy with GC 218.1 221.0 221.8 223.9 224.4 255.0 

Rasterio 11.7 11.9 12.0 12.0 12.1 12.7 

Rasterio with GC 11.9 12.1 12.1 12.2 12.2 13.9 

two_raster_formula.py      

ArcPy 229.3 232.2 233.1 233.5 234.9 238.9 

ArcPy with GC 229.7 232.5 233.2 233.5 234.6 238.1 

Rasterio 15.1 15.2 15.4 15.4 15.5 17.5 

Rasterio with GC 15.0 15.2 15.3 15.3 15.5 15.8 

writing_one_raster.py      

ArcPy 120.3 120.7 121.0 121.1 121.3 123.8 

ArcPy with GC 120.2 120.6 121.1 121.4 121.6 126.5 

Rasterio 12.8 13.1 13.3 13.5 13.4 17.5 

Rasterio with GC 12.8 13.2 13.4 13.6 13.6 16.1 
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Appendix B. Memory Usage by Program in Mebibytes (MiB). 

 
Implementation Memory at Start Memory at End Memory Difference 

adding_one_raster_by_a_constant.py  

ArcPy 236.789 247.387 10.598 

Rasterio 34.543 37.191 2.648 

adding_two_rasters.py   

ArcPy 240.324 253.477 13.153 

Rasterio 34.660 38.453 3.793 

boolean_formula.py   

ArcPy 240.266 256.973 16.707 

Rasterio 34.648 39.016 4.368 

boolean_not_one_raster.py   

ArcPy 238.523 252.328 13.805 

Rasterio 34.621 37.246 2.625 

booleanAND.py    

ArcPy 238.605 253.668 15.063 

Rasterio 34.637 38.453 3.816 

booleanOR.py    

ArcPy 240.074 255.188 15.114 

Rasterio 34.648 38.461 3.813 

converting_celsius_to_fahrenheit_one_raster.py  

ArcPy 238.699 249.441 10.742 

Rasterio 34.609 37.246 2.637 

converting_to_a_boolean_one_raster.py  

ArcPy 238.070 251.473 13.403 

Rasterio 34.551 37.176 2.625 

dividing_one_raster_by_a_constant.py  

ArcPy 237.734 248.156 10.422 

Rasterio 34.523 37.156 2.633 

dividing_two_rasters.py   

ArcPy 238.840 252.184 13.344 

Rasterio 34.668 38.504 3.836 

multiplying_one_raster_by_a_constant.py  

ArcPy 243.738 254.258 10.520 

Rasterio 34.516 37.148 2.632 

multiplying_two_rasters.py   

ArcPy 238.129 251.734 13.605 

Rasterio 34.637 38.449 3.812 

reading_one_raster.py   

ArcPy 238.652 240.273 1.621 

Rasterio 34.609 37.836 3.227 

subtracting_one_raster_by_a_constant.py  

ArcPy 238.484 250.742 12.258 

Rasterio 34.520 37.152 2.632 

subtracting_two_rasters.py   

ArcPy 238.648 253.254 14.606 

Rasterio 34.668 38.465 3.797 

two_raster_formula.py   
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Rasterio 34.625 38.957 4.332 

ArcPy 238.438 252.602 14.164 

writing_one_raster.py   

ArcPy 238.676 247.355 8.679 

Rasterio 34.625 39.332 4.707 

 
 

 




