

Marek-Spartz, Mary. 2015. Comparing Map Algebra Implementations for Python: Rasterio and ArcPy.

Volume 18, Papers in Resource Analysis. 14pp. Saint Mary’s University of Minnesota Central Services

Press. Winona, MN. Retrieved (date) from http://gis.smumn.edu

Comparing Map Algebra Implementations for Python: Rasterio and ArcPy

Mary Marek-Spartz

Department of Resource Analysis, Saint Mary’s University of Minnesota, Minneapolis,

MN 55404

Keywords: Map Algebra, ArcPy, Rasterio, Python, Raster Processing, Geographic

Information Systems (GIS), Free and Open Source Software (FOSS), Environmental

Systems Research Institute (ESRI)

Abstract

As Geographic Information Systems (GIS) expand, tools for spatial analysis and raster

processing are in high demand. Open source solutions for GIS can provide users with

low-cost, generic, and interoperable alternatives to proprietary software. Map algebra is

uniquely situated to benefit from open source implementations. This study compares map

algebra tools of the proprietary ESRI ArcPy library and the open source Rasterio library.

The analysis assesses performance of both libraries in terms of time and memory usage.

Based on these performance metrics, Rasterio should be considered a suitable alternative

to ArcPy for some GIS workloads.

Introduction

Advancements in satellite imagery and

remote sensing technology have given

rise to large raster datasets that are

increasingly accessible to GIS users

(Clewley, Bunting, Shepherd,

Gillingham, Flood, Dymond, and

Moghaddam, 2014). As GIS datasets

expand, tools for spatial analysis and

raster processing are in high demand.

Proprietary desktop software has long

been the standard in GIS analysis.

Though these systems offer powerful

analysis tools and algorithms, they are

not immune to programming,

processing, and licensing limitations. As

a result of rapidly changing spatial

analysis requirements, GIS programs

need to be adaptive and transparent.

Software must evolve with the field to

produce intuitive and dynamic

applications that accommodate modern

GIS workloads.

Free and Open Source Software

(FOSS) for GIS can provide users with

low-cost, generic, and interoperable

alternatives to proprietary software.

Open source GIS software is multiplying

due to the Internet and increasingly

code-literate users, meanwhile the need

for highly extensible GIS tools has led to

an increase in the amount of GIS

software and libraries being developed

under open source licenses (Steiniger

and Bocher, 2008). As the open source

movement grows, it is important to

examine the implications for proprietary

software. How does an open source GIS

solution compare to proprietary analysis

tools in terms of performance? What are

the relative advantages and

disadvantages of choosing an open

source solution?

 This study provides a

comparative analysis of two GIS

libraries: Environmental Systems

Research Institute (ESRI) ArcPy and

Rasterio. ArcPy is a proprietary, closed

 2

source, general-purpose GIS library.

Rasterio is an open source raster-

processing library. This study examines

the quantitative performance metrics of

the map algebra tools provided by ArcPy

and Rasterio. Tests were implemented in

each library to compare the time and

memory usage required to complete a

variety of map algebra operations.

Background

Free and Open Source Software

(FOSS)

FOSS is a transparent model of software

development where source code is freely

shared and can be read, modified, and

redistributed (Deek and McHugh, 2008).

This free exchange allows for

collaboration among programmers and

researchers and aides in the

advancement of software (Deek and

McHugh). This is in contrast to

proprietary software development in

which the creation of the source code is

privatized and licensing restrictions

usually forbid redistribution or

modification of code (Deek and

McHugh).

Deek and McHugh (2008) cite

several major advantages of open source

models over proprietary systems. Open

software often has the following

characteristics:

 Lower direct costs as modifications

are usually distributed among

developers via the Internet

 High portability and lower resource

utilization

 More eyes on the code for spotting

bugs, increasing reliability and

security

 Fast-paced development and free

updates for new software

These advantages of the open

source model can provide benefits to the

diverse community of GIS users, so it is

not surprising there has been an increase

in FOSS GIS software downloads in

recent years (Steiniger and Bocher,

2008). However, there is still significant

demand for specialized proprietary GIS

software (Donnelly, 2010). ESRI

products, like ArcGIS, corner a large

portion of the GIS market with 350,000

clients worldwide (ESRI, 2015). Due to

the sophistication and longevity of

ArcGIS tools, it is often used as a

standard for new GIS analysis software

(Donnelly, 2010).

Map Algebra

Map algebra accounts for much of the

raster analysis capabilities of GIS

software (Mennis, 2010). Map algebra is

a form of raster analysis that uses

operators to combine and create raster

layers (Bruns and Egenhofer, 1997).

Map algebra implementations consist of

a set of functions that can take one or

more raster datasets and apply

arithmetical and logical operators to

output a modified raster grid. Figure 1

shows two examples of map algebra

operations. Operators such as these are

common in GIS analysis. For example,

the units of a raster grid can be

converted using a formula, such as

changing the values of a raster from

degrees Fahrenheit to degrees Celsius.

 Boolean rasters can also be used

for analysis. Boolean rasters store two

values, True and False, or one and zero,

respectively. They help visualize where

an element exists and where it does not.

Figure 2 shows an example of a map

algebra operation that outputs a Boolean

raster with values equal to one where the

slope is greater than ten.

 3

Figure 1. Multiplying by a constant grid (left)

and adding two grids (right).

Figure 2. A Boolean grid where areas that are

True (=1) have a slope greater than 10 and all

other cells are False (=0).

There is also a set of operators to

combine Boolean rasters. These include

and (&), or (|), not (~), and exclusive or

(^). For example, it may be necessary to

find the areas where two habitats

overlap. This would involve using a ‘&’

operator on two Boolean rasters to

determine where the values are True for

both rasters and essentially multiplies

the two rasters together. Figure 3 shows

an example of this type of operator.

Figure 3. A Boolean operation.where areas that

are shared between both grids are True (=1).

The cells that are equal to one show

where the two habitat areas overlap.

As illustrated, map algebra is a

simple yet powerful way of analyzing

raster matrices and provides many

solutions to GIS problems. Map algebra

is not exclusive to a single domain; it is

a common GIS task that can benefit

from an open source implementation

(Mennis, 2010). Research in map

algebra thrives under environments

where new implementations can build

upon existing algorithms (Mennis). The

increasing amount of large spatio-

temporal datasets available for GIS

creates a demand for non-domain

specific, intuitive, and interoperable map

algebra processing tools. Consequently,

Map algebra is uniquely situated to

benefit from the advantages of FOSS

GIS tools (Mennis). Understanding these

advantages guides development of raster

processing tools and warrants research

that analyzes functionality and

 4

performance with respect to existing

proprietary software packages that

dominate the field of raster analysis

(Donnelley, 2010).

Libraries

ArcPy

ESRI’s ArcGIS exposes many of its

tools to Python through the ArcPy

library, including map algebra

operations. ArcPy contains operators for

implementing map algebra functions

through the ArcGIS Spatial Analyst

extension (ESRI, 2015). ArcPy is a

Python package that is included with

ArcGIS proprietary software (ESRI,

2015). Because the source code is

closed, it is hard to know what ArcPy is

built upon, but it requires NumPy.

NumPy is an open source Python data

analysis library for performing matrix

operations (Van Der Walt, Colbert, and

Varoquaux, 2011). The NumPy package

provides an array data structure that

stores elements of fixed size to allow for

efficient numerical computing (Van Der

Walt et al., 2011). This makes NumPy

arrays ideal for calculating raster

surfaces for map algebra

implementations.

Rasterio

Rasterio is an open source library

developed by Mapbox, Inc. for reading

and writing geospatial raster datasets in

Python (Mapbox, 2015). Rasterio

provides a NumPy interface to GDAL

rasters. The NumPy array can be

modified and subsequently exported

using GDAL (Mapbox). GDAL, or the

Geospatial Data Abstraction Library, is a

library used for the conversion and

modification of a variety of geospatial

data formats (gdal.org, 2015). GDAL is

licensed by the Open Source Geospatial

Foundation and can be used to parse and

process raster data in a variety of

formats including ArcInfo GRID files

(gdal.org).

Methods

Implementation of Python Map

Algebra Scripts

Rasterio and ArcPy were installed on a

Dell Inspiron 3000 Series i3847 Desktop

with a 3.2 GHz Intel Core i5-4460

Processor and 8 GB RAM, running

Windows 7. ArcGIS for Desktop 10.3

was installed, including ArcPy, Python

2.7.8 (32-bit), and NumPy 1.7.1. To

minimize differences between the

Rasterio and ArcPy environment,

Rasterio was installed against the Python

installation included with ArcGIS.

However, Rasterio relies on a more

recent version of NumPy (version 1.9.2)

than ArcPy, so NumPy was upgraded

and downgraded when switching

between libraries.

Equivalent Python scripts were

written for ArcPy and Rasterio using the

same raster dataset. The raster dataset

used for all tests was a TIFF sample file

provided by Rasterio (tests/data/

RGB.byte.tif from Mapbox, 2015). The

functions written for both the Rasterio

and ArcPy implementation were as

follows:

1. Open and read a raster file.

(reading_one_raster.py)

2. Write a raster to a file.

(writing_one_raster.py)

3. Add by a constant.

(adding_one_raster_by_a_

constant.py)

 5

4. Subtract by a constant.

(subtracting_one_raster_by_a_

constant.py)

5. Multiply by a constant.

(multiplying_one_raster_by_a_const

ant.py)

6. Divide by a constant.

(dividing_one_raster_by_a_constant.

py)

7. A formula involving multiple

constants.

(converting_celsius_to_fahrenheit_o

ne_raster.py)

8. Add two rasters.

(adding_two_rasters.py)

9. Subtract two rasters.

(subtracting_two_rasters.py)

10. Multiply two rasters.

(multiplying_two_rasters.py)

11. Divide one raster by another.

(dividing_two_rasters.py)

12. A formula involving multiple rasters.

(two_raster_formula.py)

13. Convert to a Boolean raster.

(converting_to_a_boolean_one_raste

r.py)

14. Use the ‘not’ Boolean operator.

(boolean_not_one_raster.py)

15. Use the ‘and’ Boolean operator.

(booleanAND.py)

16. Use the ‘or’ Boolean operator.

(booleanOR.py)

17. Use a combination of Boolean

operators. (boolean_formula.py)

Each program was scripted as simply

and as similar as possible between both

libraries. The same raster files were used

for both implementations. The Rasterio

program for converting raster values

from Celsius to Fahrenheit is as follows:

import rasterio

@profile

def benchmark():

 with rasterio.open('R.byte.tif') as src:

 arr = src.read()

 arr = (arr * 9) / 5 + 32

 with rasterio.open('output.tif', 'w',

**src.meta) as dst:

 dst.write_band(1, arr[0])

benchmark()

The ArcPy script for the same program

is similar:

import arcpy

from arcpy.sa import ApplyEnvironment

arcpy.CheckOutExtension("Spatial")

arcpy.env.overwriteOutput=True

@profile

def benchmark():

 src = arcpy.Raster('R.byte.tif')

 arcpy.env.snapRaster = src

 dst = ((src * 9) / 5 + 32) % 255

ApplyEnvironment(dst).save('output.tif')

benchmark()

The ‘#---’ acts as a separator between

the setup and the statement. The setup

portion of the code exists above ‘#---’

and includes imports and environment

settings. The code below the ‘#---’ is the

map algebra function, or the part of the

code that constitutes the benchmark

statement.

Benchmarks

When considering software

performance, efficiency is defined as the

amount of time and resources used to

complete a task (Wagner and Scott,

1995). ArcPy and Rasterio scripts were

tested for performance by assessing their

execution time and memory usage.

Execution Time

Execution time is the amount of time it

takes for a block of code to run. The

program that runs the benchmarks

loaded the files as strings and split them

into setup and benchmark statements.

A helper function was written to analyze

the time performance of each map

algebra function for both ArcPy and

Rasterio. This function takes three

 6

arguments, a statement block (for the

ArcPy and Rasterio benchmark), a setup

block (for imports needed by the

benchmarks), and whether to enable or

disable garbage collection.

Garbage collection is used by

some programming languages to de-

allocate unused memory. While this

keeps memory usage from growing

indefinitely, it can occasionally pause

execution of the program, which can

affect time performance. For this reason,

the benchmark programs were evaluated

both with garbage collection on and

garbage collection disabled.

 The helper function used the

‘timeit’ Python module to time the

execution of the benchmark. To

minimize the impact of the import time,

and instead emphasizing actual

processing time, timeit can be

parameterized to execute the statement

multiple times per setup (Python

Software Foundation, 2014). This study

emphasizes running the statement rather

than the setup because the statement

performance is more important for the

majority of users. The helper function

tells timeit to run the benchmark forty

times per setup block (n=40). Timeit

returns the result of executing the setup

and statements as a single time in

seconds. To get the average execution

time of the benchmark, this was

averaged, and converted to milliseconds

for easier understanding. Timeit was also

configured to repeat both the setup and

the statements (n=40), to returns a list of

such times. In total, the setup blocks

were ran 40 times, and the benchmark

statements for each program were ran

1,600 times, (40 per setup block

execution).

def milliseconds(t):

 return t * 1000

def profile(stmt='pass', setup='pass',

run_gc=False):

 n = 40

 setup = 'gc.collect();' + setup

 if run_gc:

 setup = 'gc.enable();' + setup

 t = timeit.Timer(stmt, setup)

 return [

 milliseconds(x / n)

 for x

 in t.repeat(repeat=n, number=n)

]

Memory

The same seventeen benchmarks were

analyzed using ‘memory_profiler’, a

Python package for such analysis. It

outputs a report with line-by-line

memory consumption, including both

total memory consumed and incremental

(how much memory was consumed

relative to the previous line of

execution).

Results

Rasterio used less time for all seventeen

map algebra tasks. The average

execution time for the ArcPy scripts was

observed to be significantly slower than

Rasterio using a pairwise Wilcoxon

signed rank test (p < .0001). Figure 4

compares the averaged execution time

(in milliseconds) of all of seventeen map

algebra operations combined for each

implementation. Garbage collection did

not make a discernable difference for

either ArcPy or Rasterio aside from

having a few more outliers for the cycles

when garbage collection ran.

The average execution time for

Rasterio was overall much shorter than

ArcPy with the exception of reading one

raster file, which was similar for both

libraries. In addition to faster execution

times, the Rasterio programs remained

consistent in their time usage with little

variation about the mean. ArcPy’s

programs varied more with some tasks

taking much longer than others, namely,

the Boolean operations (Appendix A).

 7

Figure 4. Summary statistics for average

execution time of ArcPy (left) and Rasterio

(right) aggregating all seventeen map algebra

functions for each implementation.

Figure 5 is a visualization of

every execution time report generated by

each implementation. Each point on the

scatter plot represents one trial.

Figure 5. Execution times of all trials for ArcPy

(left) and Rasterio (right).

There were 40 trials for each of the

seventeen map algebra programs for

both ArcPy and Rasterio, therefore, there

are 680 points plotted for ArcPy and 680

points plotted for Rasterio.

The areas where the points are

most dense roughly represent the

average execution time for the

implementation. ArcPy shows a broader

range of execution times with some

programs’ trials falling well above 400

and even 600 milliseconds. The only

ArcPy program that was comparable to

Rasterio (reading a raster file) is visible

as a cluster of 40 points at around 10

milliseconds. Figure 5 shows Rasterio

trials were not only faster than those of

ArcPy, but they were more consistent as

well.

 Additionally, Rasterio used

considerably less memory than ArcPy

for all seventeen of the map algebra

tasks (Appendix B). For the programs

that were tested, Rasterio appears to use

roughly one quarter of the memory that

ArcPy used. The incremental memory

usage of ArcPy was higher for every

task, except reading one raster file.

ArcPy may be using a software design

feature known as lazy loading where the

program waits to load the image until the

data is needed for an operation.

However, without access to the code,

this cannot be confirmed.

Discussion

An open source GIS solution may be

preferred over proprietary software for

certain tasks. Although ArcPy offers a

greater breadth of GIS analysis tools, it

is not necessarily the most powerful or

efficient analysis option. This study

suggests Rasterio is superior in

execution time and memory usage for

map algebra. There were also additional

advantages to Rasterio that were

encountered during the implementation.

 8

Originally, a three-band imagery

raster was being used in testing. ArcPy

was not able to process the three bands

without additional lines of code, but this

would make the ArcPy scripts use

different logic than the Rasterio scripts.

The three-band raster was modified to a

single-band raster in order to make the

scripts for both libraries comparable, but

it is important to note Rasterio was able

to operate on three bands without

additional clarification. Additionally,

Rasterio supports multiple platforms and

was readily installed for Mac OS X,

which is advantageous for work

environments with a heterogeneous IT

infrastructure.

Does it Scale?

An important advantage of Rasterio and

many open source technologies is their

ability to scale costs efficiently. This is

especially important for large raster

processing tasks. Many of the algorithms

used to implement map algebra are

embarrassingly parallel, that is, the

workload can easily be distributed into

multiple processing tasks (Wagner and

Scott, 1995). The large workloads

associated with GIS data often encounter

performance problems and hardware

limitations (Wagner and Scott, 1995).

Large-scale raster processing

implementations are optimized when the

work can be distributed among several

computers (cloud computing or parallel

computing) (Clewley et al., 2014). This

type of computing is becoming essential

as GIS systems progress and

multidimensional datasets expand

(Wagner and Scott, 1995). Proprietary

software can make parallelization

difficult and expensive, therefore,

modular, open source programs are well

suited for these processing tasks

(Clewley et al., 2014).

Implication for ArcGIS

Proprietary software, like ArcGIS, has

much to gain from examining open

source GIS platforms such as Rasterio.

ArcGIS already utilizes many open

source technologies including Python

and NumPy. The future of ArcGIS

software will depend on its ability to

recognize the changing needs of GIS

users. Adopting transparent and

interoperable practices of open source

technologies may help advance ArcGIS

tools through collaboration and

scalability. There is evidence ESRI is

incorporating these concepts into their

products. ArcGIS Pro is a recent

addition to ArcGIS for Desktop that

offers a modular application for viewing

and analyzing ArcGIS content (ESRI,

2015). It features a simple user interface

with a built-in Python console for

interactive programming. It also

encourages sharing of content within

ArcGIS organizations. ArcGIS Pro

depends on ArcGIS for Desktop for

processing. However, the architecture of

the applications suggests a less

monolithic approach to GIS tools from

ESRI going forward.

Why Open Source?

The success of Rasterio and other open

source GIS libraries will depend on

continued contributions from the

community of open source developers.

Mapbox is gaining popularity among

GIS users and will likely continue to

support its products. Rasterio is

increasing functionality and has already

improved many of its features during

this study. Many will still prefer the

 9

wide array of analysis options that

ArcGIS for Desktop offers. However,

when choosing analysis tools, GIS

professionals should take a critical look

at the requirements of their workload

and be parsimonious about their

selections.

 It is important to understand that

open source and proprietary approaches

to software development lead to

different design philosophies.

Proprietary software development often

leads to monolithic, large, cohesive

programs that do a wide array of tasks.

In contrast, open source software

development typically leads to programs

that are modular, interoperable, and

designed for a specific task. Often,

focusing on a specific task leads to

higher quality. Extensibility and

optimum performance are goals of many

open source implementations. Both

approaches have their advantages and

disadvantages. Projects requiring

scalable and portable tools benefit from

open source solutions.

Rasterio is specifically used for

raster analysis, but due to the diverse

community of open-source contributors,

there are a wide variety of tools

available for most GIS tasks. For

example, Fiona is an open source library

that is similar to Rasterio, but built for

processing vector data (including

shapefiles) (Python Software

Foundation, 2014).

This study debunks some of the

myths surrounding open source GIS

applications; performance, quality, user

support, and ease of use can be just as

good with open source software as with

proprietary software. Depending on the

task, an open source solution can save

time and money and should be

considered as an alternative to

proprietary software.

Acknowledgments

I would like to thank John Ebert and the

Department of Resource Analysis at

Saint Mary’s University of Minnesota

for their help with this research and Kyle

Marek-Spartz for his support and advice

throughout this project.

References

Bruns, H. T., and Egenhofer, M. J. 1997.

User interfaces for map algebra.

URISA-Washington DC, 9, 44-55.

Clewley, D., Bunting, P., Shepherd, J.,

Gillingham, S., Flood, N., Dymond, J.,

and Moghaddam, M. 2014. A Python-

Based Open Source System for

Geographic Object-Based Image

Analysis (GEOBIA) Utilizing Raster

Attribute Tables. Remote Sensing, 6(7),

6111-6135. doi:10.3390/rs6076111

Deek, F. P., and McHugh, J. A. 2008.

Open source: technology and policy

(pp. 1-18). New York: Cambridge

University Press.

Donnelly, F. P. 2010. Evaluating open

source GIS for libraries. Library Hi

Tech, 28(1), 131-151.

ESRI. 2015. ArcGIS Platform. Retrieved

February 10, 2015 from http://www.

esri.com/ software/arcgis/.

Geospatial Data Abstraction Library

(GDAL). Retrieved February 8, 2015

from www.gdal.org.

Mapbox. 2015. Rasterio. Retrieved

February 10, 2015 from

https://github.com/ mapbox/rasterio.

Mennis, J. 2010. Multidimensional Map

Algebra: Design and Implementation

of a Spatio-Temporal GIS Processing

Language. Transactions In GIS, 14(1),

1-21. doi:10.1111/j.1467-

9671.2009.01179.x.

Python Software Foundation. 2014. 27.5

timeit: Measure Execution Time of

 10

Small Code Snippets. Retrieved

February 12, 2015 from

https://docs.python.org

/3/library/timeit.html.

Steiniger, S., and Bocher, E. 2009. An

overview on current free and open

source desktop GIS developments.

International Journal of Geographical

Information Science, 23(10), 1345-

1370.

Van Der Walt, S., Colbert, S. C., and

Varoquaux, G. 2011. The NumPy

array: a structure for efficient

numerical computation. Computing in

Science & Engineering, 13(2), 22-30.

Wagner, D. F., and Scott, M. S. 1995.

Improving the performance of raster

GIS: a comparison of approaches to

parallelization of cost volume

algorithms. In AUTOCARTO-

CONFERENCE- (pp. 164-176).

 11

Appendix A. Execution Time Summary Statistics (in milliseconds).

Implementation Minimum First Quartile

Median

Quartile Mean

Third

Quartile Maximum

adding_one_raster_by_a_constant.py

ArcPy 194.7 197.3 199.1 198.8 200.1 205.1

ArcPy with GC 194.5 197.3 198.7 198.7 200.4 206.7

Rasterio 9.3 9.4 9.7 9.8 10.1 11.8

Rasterio with GC 9.3 9.3 9.4 9.7 10.1 11.1

adding_two_rasters.py

ArcPy 209.6 211.3 212.4 212.5 213.4 216.9

ArcPy with GC 209.2 211.5 213.0 213.0 214.4 217.7

Rasterio 11.5 11.6 11.8 11.8 12.0 13.0

Rasterio with GC 11.5 11.5 11.8 11.9 12.0 13.2

boolean_formula.py

ArcPy 597.8 600.4 603.0 602.9 604.2 614.2

ArcPy with GC 595.7 599.8 602.3 602.9 605.1 612.7

Rasterio 17.5 17.6 17.6 17.6 17.7 17.9

Rasterio with GC 17.4 17.5 17.6 17.8 17.7 21.4

boolean_not_one_raster.py

ArcPy 183.4 186.5 188.1 187.9 189.1 193.4

ArcPy with GC 182.6 186.6 188.3 188.2 189.6 196.8

Rasterio 11.6 11.8 12.0 11.9 12.0 12.6

Rasterio with GC 11.6 11.7 11.8 11.8 11.9 12.5

booleanAND.py

ArcPy 441.0 445.1 447.2 447.4 448.6 455.0

ArcPy with GC 440.1 445.3 447.9 447.5 449.5 452.8

Rasterio 13.8 13.9 14.1 14.2 14.4 15.0

Rasterio with GC 13.8 14.0 14.2 14.3 14.4 17.0

booleanOR.py

ArcPy 437.6 445.5 447.0 447.3 449.8 454.2

ArcPy with GC 440.1 446.6 448.4 449.1 451.2 460.6

Rasterio 13.8 14.2 14.5 14.5 14.7 15.5

Rasterio with GC 13.8 14.6 14.7 14.6 14.8 14.9

converting_celsius_to_fahrenheit_one_raster.py

ArcPy 208.3 210.1 211.4 211.6 212.2 218.0

ArcPy with GC 207.9 209.5 210.9 211.3 213.0 217.7

Rasterio 16.5 16.6 16.7 16.8 16.8 17.6

Rasterio with GC 16.4 16.7 16.7 16.7 16.8 16.9

converting_to_a_boolean_one_raster.py

ArcPy 180.0 183.2 183.8 184.2 185.0 189.4

ArcPy with GC 180.4 182.6 184.0 184.4 185.9 191.2

Rasterio 11.5 11.7 11.8 11.9 11.9 15.2

Rasterio with GC 11.5 11.6 11.7 11.8 11.9 12.7

dividing_one_raster_by_a_constant.py

ArcPy 199.3 202.4 204.2 204.1 205.3 209.5

ArcPy with GC 199.3 201.5 202.9 202.7 203.6 209.7

Rasterio 14.1 14.1 14.2 14.2 14.3 14.8

Rasterio with GC 14.0 14.1 14.1 14.2 14.2 15.1

dividing_two_rasters.py

ArcPy 200.4 201.7 203.5 203.2 204.5 206.4

ArcPy with GC 200.5 202.7 203.7 203.8 204.8 209.9

Rasterio 35.9 36.1 36.2 36.2 36.2 37.9

 12

Rasterio with GC 35.8 36.0 36.1 36.2 36.1 39.0

multiplying_one_raster_by_a_constant.py

ArcPy 192.6 195.7 197.1 197.0 198.3 203.6

ArcPy with GC 192.6 196.2 197.7 197.6 199.4 202.1

Rasterio 9.6 10.2 10.4 10.5 10.6 13.7

Rasterio with GC 9.7 10.2 10.4 10.4 10.6 11.8

multiplying_two_rasters.py

ArcPy 211.7 213.8 215.5 216.2 216.8 231.7

ArcPy with GC 210.8 214.0 215.0 215.2 216.6 219.2

Rasterio 11.9 12.1 12.2 12.2 12.2 14.0

Rasterio with GC 11.9 12.0 12.1 12.1 12.1 12.5

reading_one_raster.py

ArcPy 10.0 10.1 10.1 10.1 10.2 10.3

ArcPy with GC 10.0 10.1 10.1 10.1 10.1 10.2

Rasterio 4.0 4.0 4.1 4.1 4.1 4.1

Rasterio with GC 4.0 4.0 4.0 4.0 4.0 4.1

subtracting_one_raster_by_a_constant.py

ArcPy 204.9 207.0 209.1 209.1 210.6 216.7

ArcPy with GC 204.4 207.2 209.6 211.0 212.8 229.3

Rasterio 9.7 10.0 10.3 10.4 10.6 11.2

Rasterio with GC 9.8 10.0 10.2 10.3 10.4 11.6

subtracting_two_rasters.py

ArcPy 216.9 220.2 221.4 221.7 222.7 226.7

ArcPy with GC 218.1 221.0 221.8 223.9 224.4 255.0

Rasterio 11.7 11.9 12.0 12.0 12.1 12.7

Rasterio with GC 11.9 12.1 12.1 12.2 12.2 13.9

two_raster_formula.py

ArcPy 229.3 232.2 233.1 233.5 234.9 238.9

ArcPy with GC 229.7 232.5 233.2 233.5 234.6 238.1

Rasterio 15.1 15.2 15.4 15.4 15.5 17.5

Rasterio with GC 15.0 15.2 15.3 15.3 15.5 15.8

writing_one_raster.py

ArcPy 120.3 120.7 121.0 121.1 121.3 123.8

ArcPy with GC 120.2 120.6 121.1 121.4 121.6 126.5

Rasterio 12.8 13.1 13.3 13.5 13.4 17.5

Rasterio with GC 12.8 13.2 13.4 13.6 13.6 16.1

 13

Appendix B. Memory Usage by Program in Mebibytes (MiB).

Implementation Memory at Start Memory at End Memory Difference

adding_one_raster_by_a_constant.py

ArcPy 236.789 247.387 10.598

Rasterio 34.543 37.191 2.648

adding_two_rasters.py

ArcPy 240.324 253.477 13.153

Rasterio 34.660 38.453 3.793

boolean_formula.py

ArcPy 240.266 256.973 16.707

Rasterio 34.648 39.016 4.368

boolean_not_one_raster.py

ArcPy 238.523 252.328 13.805

Rasterio 34.621 37.246 2.625

booleanAND.py

ArcPy 238.605 253.668 15.063

Rasterio 34.637 38.453 3.816

booleanOR.py

ArcPy 240.074 255.188 15.114

Rasterio 34.648 38.461 3.813

converting_celsius_to_fahrenheit_one_raster.py

ArcPy 238.699 249.441 10.742

Rasterio 34.609 37.246 2.637

converting_to_a_boolean_one_raster.py

ArcPy 238.070 251.473 13.403

Rasterio 34.551 37.176 2.625

dividing_one_raster_by_a_constant.py

ArcPy 237.734 248.156 10.422

Rasterio 34.523 37.156 2.633

dividing_two_rasters.py

ArcPy 238.840 252.184 13.344

Rasterio 34.668 38.504 3.836

multiplying_one_raster_by_a_constant.py

ArcPy 243.738 254.258 10.520

Rasterio 34.516 37.148 2.632

multiplying_two_rasters.py

ArcPy 238.129 251.734 13.605

Rasterio 34.637 38.449 3.812

reading_one_raster.py

ArcPy 238.652 240.273 1.621

Rasterio 34.609 37.836 3.227

subtracting_one_raster_by_a_constant.py

ArcPy 238.484 250.742 12.258

Rasterio 34.520 37.152 2.632

subtracting_two_rasters.py

ArcPy 238.648 253.254 14.606

Rasterio 34.668 38.465 3.797

two_raster_formula.py

 14

Rasterio 34.625 38.957 4.332

ArcPy 238.438 252.602 14.164

writing_one_raster.py

ArcPy 238.676 247.355 8.679

Rasterio 34.625 39.332 4.707

