# Analysis of Sediment Basin Siting Locations using Components of the Ecological Ranking Tool and the Agricultural Conservation Planning Framework in a Subwatershed of Garvin Brook, Winona County, Minnesota USA

Eric M. Lindberg Department of Resource Analysis, Saint Mary's University of Minnesota, Minneapolis, MN 55404

*Keywords:* Sediment Basin, Agricultural Conservation Planning Framework (ACPF), Terrain Analysis, Erosion, Revised Universal Soil Loss Equation (RUSLE), Geographic Information System (GIS), Stream Power Index (SPI), Light Detection and Ranging (LiDAR)

# Abstract

Erosive processes are constantly changing the landscape. In the Garvin Brook watershed of Southeast Minnesota USA, agricultural production in areas of significant topographic relief exposes risk of high sediment and nutrient transport into ecologically sensitive trout stream and valley waterways. Local conservation efforts are focused on reducing soil loss risk and identifying opportunities to mitigate environmentally sensitive Non-Point Source (NPS) pollution impairment. The time and effort involved with identification of high soil loss risk and Best Management Practices (BMPs) can be significantly reduced with the advancement of new technologies. While many types of effective conservation measures are used in the agricultural landscape, the sediment basin often represents the last defense available to detain the soil leaving the field. This study employs weighted components from the Ecological Ranking Tool using advanced Light Detection and Ranging (LiDAR) resolution for Digital Terrain Analysis (DTA) and the Agricultural Conservation Planning Framework (ACPF) toolset within a Geographic Information System (GIS) to rank and characterize potential locations for sediment basins within the sub-watershed. Results analysis from this study produced a final siting map which illustrates field edge and off field characterized zones classified by a combined score of measures of erosivity and proximity to surface water. Potential sediment basin dam locations were selected using a modified ACPF tool for surface profiles supportive of a user specified minimum 3-meter embankment height.

# Introduction

NPS pollution from agricultural producing landscapes causes environmental impairment to water bodies. In the midwestern United States, row-crop agriculture is the highest source of water pollution and is listed as a contributing factor to 70% of impaired streams (Zimmerman, Vondracek, and Westra, 2003). As explained in Stout, Belmont, Schottler, and Willenbring (2014), excessive loads of fine sediment cause water quality degradation, not only directly affecting aquatic habitat, but also indirectly as sediment is often laden with nutrients and toxins which can cause severe eutrophication and diminished oxygen concentrations (Edwards, Shannon, and Jarrett, 1999). Fine sediment, including sand, silt, and clay, dominates the materials in many rivers and plays a pivotal role in

Lindberg, Eric. 2016. Analysis of Sediment Basin Siting Locations using Components of the Ecological Ranking Tool and the Agricultural Conservation Planning Framework in a Sub-watershed of Garvin Brook, Winona County, Minnesota USA. Volume 19. Papers in Resource Analysis. 20 pp. Saint Mary's University of Minnesota University Central Services Press. Winona, MN. Retrieved (date) from http://www.gis.smumn.edu nutrient transport, channel morphology, light penetration, and food-web dynamics (Stout *et al.*, 2014). The costliest NPS damage occurs when soil particles enter lake and river systems. Deposits raise and widen waterways, causing more susceptibility to erosive overflow and flooding (Pimentel, 2006).

Government conservation agencies are purposed to reduce NPS pollution from both agricultural and urban areas. Methods suggested for decreasing NPS pollution include implementing BMPs such as contour farming, conservation tillage, terraces, and perimeter controls like sediment basins (Edwards *et al.*, 1999).

### Garvin Brook Watershed

The study area is a Department of Natural Resources (DNR) defined level 7 subwatershed, a part of the larger 12-digit Hydrological Unit Code (HUC12) known as Garvin Brook Watershed in Winona County, Minnesota USA. This 9,809 acre sub-watershed extends from the city of Lewiston, northeast to the city of Stockton (Figure 1). Flowage continues east to the Mississippi River within the Mississippi River–Winona HUC8 watershed.



Figure 1. DNR level 7 sub-watershed location in the greater Mississippi Watershed, Winona County.

This area was chosen due to the availability of existing sediment basin data as well as hydrologically conditioned Digital Elevation Model (DEM) data made available through the Winona County Planning Department. The land use of the study area is primarily agricultural with 38.0% in row crops and 22.1% in grass/pasture. Deciduous forest covers 34.2% of the area where much of the steeper slopes occur. The average slope of the sub-watershed is 16.8%. Approximately 20% of the area is under 3% slope, and 42% overall is under 6% slope. The sub-watershed comprises 37 types of soils with silt loam as most predominate, Seaton silt loam at 29.7%, Mt. Carroll silt loam at 18.4%, and LaCrescent silt loam at 13.2%.

The sub-watershed is regionally located in a large unglaciated area of Southeastern Minnesota known as the Driftless Area where steep slopes, thin soils, and karst topography create a susceptibility to non-point pollution (Johnson, 2008). According to Johnson, cultivated cropland on rolling to steeply sloping topography contributes to higher sheet and rill erosion rates relative to level topography. The presence of short steep slopes in Southeastern Minnesota presents potential for high surface water impacts (Johnson).

#### **Conservation Technology**

GIS is designed to store, retrieve, manipulate, and display large capacities of spatial information derived from a variety of sources (Yitayew, Pokrzywka, and Renard, 1999). Linkage of GIS and erosion models is made possible by the spatial format in which erosion model factors are presented. Opportunities to combine GIS with soil erosion models have largely been carried out through raster GIS. Increased precision in terrain modeling has produced tools and frameworks through advanced GIS technology such as DTA and the ACPF toolset used in this study.

## DTA

DTA involves the use of DEM data to model the topography of an area. According to (Moore, Grayson, and Ladson, 1991), topography significantly impacts hydrological, morphological, and biological processes. The mapping of digital terrain parameters reveals water pathways and areas of accumulation which are considered chief catalysts of soil and sediment transport within a landscape (Moore et al., 1991; Tomer, Porter, Boomer, James, Kostel, Helmers, Isenhart, and McLellan, 2015). In a Minnesota study, Galzki, Birr, and Mulla (2011) defined critical areas of overland flow as areas with connections to surface water where the likelihood of transporting contaminants is highest. Galzki et al. applied terrain attributes of slope, flow accumulation, and the Stream Power Index (SPI) to identify critical areas within a GIS with high resolution elevation data models.

# LiDAR

LiDAR data are created by sending rapid laser light pulses from overflying aircraft towards ground locations and measuring the distance or range with advanced Global Positioning System (GPS) receiving devices. Plotted return data are recorded to produce highly accurate elevation readings which are processed into increasingly accurate DEM data. Terrain analysis and modeling techniques dependent on topographic detection are direct beneficiaries of the advanced resolution and accuracy of improved LiDAR technologies. The resulting DEM can be stored and manipulated within a GIS.

As a benefit to this study, high resolution 1-meter LiDAR data were available to create a very accurate DEM of the sub-watershed surface, flow direction, flow accumulation, and subsequent SPI and flow distance calculations.

# ACPF

The ACPF toolset (Tomer et al., 2015; Porter, Tomer, James, and Boomer, 2015) was developed as a free resource toolset compatible with GIS offered through the North Central Region Water Network. The basis of the framework premise contends geographic analysis can be used to characterize an array of opportunities to influence water and nutrient transport within fields, off field edges, and in riparian zones (Tomer, Porter, James, Boomer, Kostel, and McLellan, 2013). According to (Tomer et al., 2013), while the framework is not intended to be followed prescriptively, it does locate and identify a multitude of practices to be further evaluated by conservation planners at watershed and field levels. This framework was used in this study for the primary terrain analysis functions and the siting of water storage practices as further discussed. The ACPF tool requires an accompanying download of TauDEM (Tarboton, 2016) which is utilized for geoprocessing function.

### Hydrologic Conditioning

LiDAR is an amazing technology that can pierce tree canopies and provide bare earth and sensed object returns, yet it is not perfect. Bridges, overpasses, and culvert locations are examples of blocking objects that provide false returns in LiDAR derived stream networks. False returns in these areas create digital dams to water flow and require cuts to be made in the DEM to represent and regain actual water flow patterns and stream networks. The hydrologically conditioned DEM as obtained for this study was processed by the Winona County Planning Department using the ACPF toolset. An example of a hydrologically conditioned flow is shown in Figure 2.



Figure 2. Unseen culvert resulted in LiDAR produced flow line in yellow parallel to roadway. Hydrologic cut line (red) allows actual road passage and represents actual flow (blue).

### Modeling Soil Loss

Among many emerging erosion models, the empirical Universal Soil Loss Equation (USLE) has remained the most practical method of estimating soil erosion potential at the field scale (Lim, Sagong, Engel, Tang, Choi, and Kim, 2005). Other physical process based erosion models have intensive data and computation requirements (Lim et al., 2005). At the local (plot) scale, erosion rates are most commonly estimated using the empirical USLE model or some derivative thereof (Stout et al., 2014). The main user for USLE has been resource conservationists, primarily the United States Department of Agriculture (USDA) / Natural Resources Conservation Service (NRCS) in

measuring rill and interrill erosion (Yoder, Foster, Weesies, Renard, McCool, and Lown, 2004). An updated model, the Revised Universal Soil Loss Equation (RUSLE), further enhanced prediction of long-term average annual soil loss with the addition of agricultural practices such as cropping and management (Renard, Weesies, McCool, and Yoder, 1997).

#### **RUSLE** Overview and Factors

RUSLE's empirical modeling utilizes comparisons to observed base conditions to which all other topographic, cropping, management and conservation practices were compared (Renard, Yoder, Lightle, and Dabney, 2011). Data from plots with differing slopes, lengths, and crops were adjusted and contrasted from unit plot benchmarks to develop impacting factors involving characteristics of climate, soil erodibility, topography, vegetative cover, and soil conservation to predict average soil loss (Renard *et al.*, 2011).

RUSLE appears as:

$$A = R * K * LS * C * P$$

Where A is the amount of erosion for the specified field slope measure in tons/acre/year; R is a rainfall erosivity factor; K is a soil erodibility factor; LS is a combined product of slope length and steepness factors; C is a vegetative cover factor; and P is a support practice factor (Yitayew *et al.*, 1999).

Rainfall Erosivity, R-Factor

The R-Factor expresses the effect of rainfall precipitation amounts and intensity on soil erosivity with other factors held constant. It is expressed as proportional to a rainstorm's total storm energy times the maximum 30-minute intensity (Renard *et al.*, 1997). This value is reflective of both the raindrop impact and the amount and rate of overland runoff produced by the rainfall. Raindrop erosion has been observed to increase at higher storm intensities (Renard *et al.*).

Soil Erodibility, K-Factor

The K-Factor, also called soil erodibility, is represented by the effect soil properties and profile characteristics have on soil erosion (Renard *et al.*, 2011). As seen in Renard *et al.* (1997), Wischmeier; 1978, explores the K-Factor as the rate of soil loss measured in tons per acre per plot unit. The entire effect of soil detachment, transport through raindrop detachment and runoff, surface roughness, and soil infiltration contributes to an integrated soil loss (Renard *et al.*, 1997). A comparison of a soil's structure, permeability, and content of silt, sand, and loam is used to determine this factor (Renard *et al.*).

#### **Topographic LS-Factor**

The L-Factor or length of slope is predicated on the observation erosion increases as length increases (Renard *et al.*, 1997). As seen in Renard *et al.* (1997) Wischmeier and Smith; 1978, the length of slope is measured from the origin of overland flow to either the point at which gradient causes deposition or the point where runoff has become concentrated in a channel. According to Renard *et al.* (1997), the L-Factor can be best described as a ratio of predictive soil loss based on slope length as compared to the observed plot unit length of 22.13 meters with the following formula:

 $L = (\ \lambda \ / \ 22.13 \ )^m$  Where:

L = L-Factor for length  $\lambda =$  slope length in feet m = variable slope length exponent (Renard *et al.*, 1997)

The S-Factor or slope steepness represents the effect of slope grade on soil erosion (Renard *et al.*, 1997). The soil loss at the measured slope is compared to loss at the unit plot standard of 9%. Differing formulas exist for calculating the slope factor depending on whether actual slope is more or less than 9% and alternatively based upon the shape of the slope (Renard *et al.*).

For the slope steepness factor above, it is assumed rill erosion is insignificant on slopes shorter than 4.6 m (15 ft), and interrill erosion is independent of slope length (Renard *et al.*, 2011). It is noted by Renard *et al.* (1997) soil loss increases more swiftly as a result of increased slope steepness opposed to increased slope length.

For this study, the following formula from (Moore *et al.*, 1991; Lim *et al.*, 2005) is applied to primary terrain attributes as follows:

LS=
$$\left(FA^* \frac{1}{22.1}\right)^m * \left(Sin[Slope]^* \frac{.01745}{.0896}\right)^n * (m+1)$$

Where:

FA = flow accumulation m = modifying factor (.4 for croplands) n = modifying factor (1.4 for croplands)

Vegetative Cover, C-Factor

The C-Factor is used to represent the effect vegetative cover has on soil loss. The C-Factor is important because it is not a constant and represents managed conditions for erosion reduction (Renard *et al.*, 2011). The factor compares the current managed cover conditions to the unit plot

with no management. The values of the C-Factor ranges from 0 as a non-erodible soil to a value at or slightly over 1.0. Values over 1.0 indicate cover conditions more erodible than those observed under the near worst case modeled unit plot conditions.

### **Conservation Practices, P-Factor**

The P-Factor in RUSLE involves assigning a positive dimensionless value for the effect of soil loss from contouring, strip cropping and terracing and calculating and assigning an erosion reduction percentage as outlined in the USDA Agriculture Handbook 703 (Renard *et al.*, 2011; Renard *et al.*, 1997).

The resultant and sourced RUSLE factors are further discussed in the methods sections of this paper. This study utilizes the combined weighted components of the Ecological Ranking Tool to determine spatial risk assessment for potential sediment basin siting. Surface profiles supporting user specified sediment basin dam structures are determined with the ACPF toolset. Data, tools, and processing methods are described below.

#### Methods

#### Data

Data used in the project were obtained from the following sources:

#### Winona County Planning Department

- Hydrologically conditioned DEMs 1-meter filled and 1-meter unfilled Garvin Brook HUC12 buffered watershed
- Existing sediment basin polygon shapefile

# ACPF Data

- Field boundary polygon feature class
- 2014 National Agricultural Statistics Service (NASS) crop data layer

#### Minnesota Geospatial Commons

- Minnesota DNR level 7 minor watershed feature class
- Web Mapping Service (WMS) aerial imagery
- Minnesota roads layer polyline shapefile

#### NRCS Gateway / Data Viewer 6.2

- Soil Survey Geographic Database (SSURGO) soil unit shapefile
- Microsoft Access soil table data
- National Agriculture Imagery Program (NAIP) 2014 raster aerial imagery

# **Ecological Ranking Tool**

The Ecological Ranking Tool was developed by the University of Minnesota and the Board of Water and Soil Resources. The tool combines percentile ranking for soil erosion risk, water quality, and habitat quality to guide funding to the landscapes determined to be most critical. In this study the general framework of the first two components of this tool were considered as the ranking basis for sediment basin siting criteria. The methodology for the soil erosion risk was ranked (0-100) from a raster utilizing RUSLE. The water quality raster was determined by the combination of 50% of the value of significant SPI (0-100) ranking and 50% of the value of the Proximity to Stream (0-100) ranking of

measured flow accumulation distance to main channel stream. For this study, no specific Habitat Quality was identified as a protection target, therefore the Habitat Quality ranking component was not considered in this study. The overall rank was a combined sum of the rankings resulting in a weighted value between 0 and 200.

### **Primary Terrain Attributes**

The ACPF toolset was used on the hydrologically conditioned DEM with D8 (8 flow direction) terrain processing to produce primary terrain attributes of flow direction and flow accumulation, as well as hillshade and a sink-filled DEM. An attributed flow network was created with the Peuker Douglas tool. Slope was created through ArcGIS Spatial Analyst.

## SPI

The SPI is a secondary attribute measure of erosive power in flowing water (Moore *et al.*, 1991). It is the product of flow accumulation and slope and according to (Maathuis and Wang, 2006) can be used to identify siting locations for conservation practices to reduce concentrated surface flow. SPI was calculated as:

SPI = ln((FA + .001) \* (Slope + .001))

Where:

FA is the flow accumulation Slope is measured as percent

For each cell within the DEM a SPI value was calculated. A sampling method and corresponding table (Wilson, Mulla, Timm, and Klang, 2014) were used to determine a significance threshold of SPI value. SPI values were extracted from a randomly selected point sample. The sample size was determined at a 99% confidence interval and 1% error margin. The extracted values were exported to a Microsoft Excel database and an array at 99% determined that SPI threshold values over 11.482 were significant in this subwatershed. The SPI layer was then reclassified omitting values below the significance threshold. The remaining values were visually examined to determine high downslope SPI values at intersecting drainage points. A point feature class was created with points added along the downslope SPI signature nearest the intersecting drainage network. Point placement priority was given to areas with significant flow extents extending into fields. A total of 163 points were determined to have significance and SPI values at each of these points were extracted from the SPI index (Figure 3).



Figure 3. SPI points were placed slightly upstream from flow intersections. Green represents lowest erosive power, red represents highest erosive power potential.

## Pointsheds

A pointshed for each of the 163 points was created. Pointshed areas determine the extent of overland flow contributing to the highest SPI values. The pointsheds were clipped by sedimentation zone area to establish erodible areas upstream of and within the catchment of proposed sediment structures. The extent of the erodible area was used for soil loss risk using RUSLE (Figure 4).



Figure 4. Pointshed delineated from SPI flowpoint. Red represents 6.5 acres as the erodible portion of the 7.8 acre pointshed for RUSLE modeling.

# **RUSLE Modeling**

Rainfall Erosivity, R-Factor

The R-Factor is available on static isoerodent maps and has been predetermined at a value of 145 inclusive of the study area in Winona County. A raster layer was created and attributed with a value constant of 145 which is near the highest rates in Minnesota while national rates range from 10 - 700.

Soil Erodibility, K-Factor

Using the ArcGIS based NRCS Soil Survey 6.2, the weighted rock free Kw factor was extracted and exported as a layer for the sub-watershed area. Soil erosivity is a significant soil loss factor in Winona County, as expansive areas of silt and silt loams exhibit high erosivity rates as illustrated in (Figure 5).



Figure 5. K-Factor; erodibility by soil type. Low soil erodibility values are represented in green and higher values are represented in red.

# **Topographic LS-Factor**

Higher values of slope steepness have a greater effect on erosivity than the length of the slope when compared as independent factors. The combined LS-Factor (Figure 6) most closely represents a slope raster of the subject area extent. The majority of values range from 0-58. Outlier values up to 7075 occur where cliffs exhibit extreme slope steepness.



Figure 6. LS-Factor; slope length/steepness. Lowest values are represented in green while predominant high values are in blue. Long lengths and cliff locations of extreme slope are extremely rare and values > 54 up to 7075 are represented in black and visible only at extreme scale.

Cover Management, C-Factor

The NASS Crop Data Layer from 2014 was used to apply the assumed management C-Factor. The following table (Table 1) describes the NASS C-Factor attributed to each land type.

Table 1. NASS C-Factor value table suggestions from the PTMapp Users Guide (Houston Engineering, 2016).

| C- Factor | NASS CDL Classification                                                                                                                                                            |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.200     | Corn, Soybeans, Sunflower, Barley, Spring Wheat, Durum Wheat, Winter<br>Wheat, Rye, Oats, Canola, Flaxseed, Peas, Herbs, Dry Beans, Potatoes,<br>Other Crops, Fallowildle Cropland |
| 0.100     | Alfalfa, Other Hay/Non Alfalfa, Sod/Grass Seed, Herbs                                                                                                                              |
| 0.005     | Clover/Wildflowers                                                                                                                                                                 |
| 0.003     | Developed/Open Space, Developed/Low Intensity, Developed/Medium<br>Intensity, Developed/High Intensity, Barren                                                                     |
| 0.002     | Deciduous Forest, Evergreen Forest, Shrubland, Mixed Forest                                                                                                                        |
| 0.001     | Grassland Herbaceous, Woody Wetlands, Herbaceous Wetlands                                                                                                                          |
| 0.000     | Open Water                                                                                                                                                                         |

Each land type and factor was applied to the sub-watershed and converted to a raster layer (Figure 7).



Figure 7. C-Factor; erodibility by ground cover.

**Conservation Practices, P-Factor** 

Because of the scale and unknown local detail of each field, the P-Factor was given a value constant of 1 in a raster layer.

### **RUSLE** Output

RUSLE layers were overlaid (Figure 8) to produce an overall soil loss for the sub-watershed.



Figure 8. RUSLE factors overlay.

A calculation was used to create a resultant product layer from the overlay. Clipped pointshed polygons served as zones for zonal statistics to determine mean soil erosion rates and erosion sums. Sum units were converted by the field calculator to tonnage of detached soil per pointshed.

A standard tolerance (T-value), represents permissible soil loss rates as determined by soil scientists. T-values in Winona county are reported as a value of 5 tons/acre/year. While pointshed soil loss rates in this study exceeded the T-value of 5, not all conservation measures reducing rates were examined. Further, this study focused on the sum of pointsheds contribution to soil loss and delivered sediment to perennial streams.

# Sediment Transport and Delivery

According to Lim *et al.* (2005) RUSLE alone is a field scale model and cannot solely be used to estimate the amount of sediment reaching the downstream area since eroded soil may get deposited during transport to the outlet. Lim *et al.* posits to account for these processes, the Sediment Delivery Ratio (SDR) for a watershed should be used to estimate total sediment transported to the watershed outlet. In addition, Lim *et al.* explains the SDR is expressed as:

$$SDR = SY / E$$

Where:

SDR = sediment delivery ratio SY = sediment yield E = gross erosion for entire watershed

The following SDR formula (Lim *et al.*, 2005) was used:

$$SDR = .0472 A^{-0.125}$$

Where:

SDR = sediment delivery ratio A = watershed/catchment size (km<sup>2</sup>)

Attributes were created for the SDR of each pointshed and applied to the RUSLE sum by the field calculator to compute the proposed sediment delivered within each pointshed (Figure 9).



Figure 9. Soil loss per pointshed estimated by RUSLE and SDR.

## Field Boundaries

A field boundary layer of attributed field polygons was downloaded from ACPF sources. It was necessary to edit nonagricultural parcels to agricultural use. A total of 45 fields containing 450 acres were edited and re-coded from non-agricultural to agricultural use to form a new agricultural field boundary layer. A 60meter non-intersecting buffer ring was created outside the agricultural field boundaries. This Agricultural Ring Buffer (ARB) provides the area for the sediment

### basin zone.

#### Sediment Basin Priority Zone

The premium location of the sediment basin siting is at or below field edge and is consistent with the producer's desire to limit the loss of productive land to conservation practice. The ARB was the zonal extent for the implementation of sediment basins. To further identify optimal zones, the significant SPI was vectorized and clipped by both pointshed and ARB extents.

SPI vector signatures were buffered at 20 meters to create a sediment basin priority zone along the flow accumulation path and within the ARB (Figure 10). Spatial Analyst was used to explode the multi-part polygon into single parts within pointsheds with individual attributes.



Figure 10. Creation of sediment basin priority location (black) by clip and buffer of vectorized SPI signature within ARB. The area of this sediment basin priority location is approximately 2.16 acres.

## Distance to Stream

A distance to stream application is available as a tool in the ACPF toolset. The tool converted the previously designated perennial stream to a raster. The D8 flow accumulation was then used to measure the horizontal distance from each grid cell to the perennial stream channel output as a continuous raster (Porter *et al.*, 2015).

Manually, the maximum flow accumulation value was determined from zonal statistics for each sediment basin buffer zone. The cell determined to have maximum value within each sediment basin buffer zone was converted to a point and represents the furthest potential downslope location for a sediment basin. These points were then used to extract a distance to stream value. The shortest possible distance from any potential sediment basin to the perennial stream channel was represented by this value for each sediment basin priority zone (Figure 11). Close proximity of high flow accumulation represents the highest risk to perennial streams.



Figure 11. Minimal possible distance along accumulated flow path between sediment basin priority zone and perennial stream.

#### Sediment Damming Structures

There are many possible types and designs of sediment basins. The precise design and

exact placement are beyond the scope of this study. However, the location of characteristically favorable zones has been established. The least complex type of sediment basin would be the result of blocking or damming accumulated flow within the priority placement zone. This type of sediment basin would incur little or no excavation of soils.

The ACPF creators have allowed and encouraged experimental alteration of the tools to determine best management criteria for specific landscapes and management objectives. While Water and Sediment Control Basins (WASCOBs) most commonly occur within the field boundary and may have repetitive siting along a flowpath, their designed purpose of reducing flow and inducing sediment settlement complement characteristics of sediment basins. Alteration of the WASCOB tool was determined to be serviceable in determining locations where dam structures could be placed to meet predetermined embankment heights. The Winona County Planning Department advised a 3-meter minimum embankment height for damming locations.

The ACPF WASCOB tool was modified to: search for damming locations in catchments ranging from 2 to 100 acres, search within a 60-meter distance along flow paths for embankment threshold heights of 3 or more meters, and attempt placement every 45 feet or 13.7 meters along the flow accumulation path to enhance the likelihood of placement within the relatively narrow sediment basin priority zone extent. The input for field boundary was established by adding the ARB layer to the new field boundary layer for agricultural fields to produce an input extent. Results were further refined to locations intersecting sediment basin priority zones (Figure 12).



----- Proposed Sedimentation Basin Damming Locations

Figure 12. Red polylines indicate proposed damming structures intersecting the sediment basin priority zones.

#### Results

The RUSLE model and SDR produced soil loss risk results for pointshed erodible upslope areas and potential sediment basin locations. The SPI value was extracted at the bottom of slopes nearest flow convergent points to determine maximal erosive power of flows downslope of each potential sediment basin priority zone. Minimum distances to stream value was determined for each sediment basin priority zone. Values from the RUSLE sediment loss risk model, and SPI for water quality assessment were ranked in relativity for catchments within the watershed with the following formula:

$$Z = \frac{X - \min(X)}{\max(X) - \min(X)}$$

Where:

Z is rank defined (0-1) X is the population values For the distance to stream the inverse is used to rank locations. Lowest distances to the stream are representative of the highest risk values while higher distances represent decreasing risk as determined with the following formula:

$$Z = 1 - \frac{X - \min(X)}{\max(X) - \min(X)}$$

Resultant RUSLE rankings for sediment risk was multiplied by 100 (Figure 13) and resultant ranking for SPI (Figure 14) and distance to stream (Figure 15) were each multiplied by 50. Each rank was joined to a correlating sediment priority zone by a primary key.







Figure 14. Distance to stream score from 0-50.



• 12 - 24 • 37 - 50 Figure 15. SPI signature rank score from 0-50.

Accuracy limitations of the digitized agricultural field boundary layer prevented the siting of four pointshed sediment basin priority zone locations. The remaining 159 sediment basin priority locations were scored within a table using the field calculator (Appendix A). Results were classified and displayed by total scored rank per pointshed (Figure 16).

![](_page_13_Figure_1.jpeg)

![](_page_13_Figure_2.jpeg)

Figure 16. Total rank score attributed to each sediment basin priority zone within each pointshed. Total possible rank is (0-200) with red and dark green representing the highest and lowest ranking scores. Priority zones were classified up to the maximum possible score of 200 although the highest ranking priority zone score was 169.

The modified ACPF WASCOB tool produced multiple damming locations dependent on soil terrain profile fit within tool constraints. A map cutout area exemplifies possible dam locations intersecting ranked sediment basin priority zones (Figure 17). Within this cutout area three existing pond locations occur at intersecting locations.

![](_page_13_Picture_6.jpeg)

Figure 17. Map cutout area showing potential sediment basin dam locations as determined by the modified ACPF tool. Three ponds (shown in light blue) are located within colored sediment basin priority zones at or near intersections of proposed damming locations.

Sediment basin priority zones were ranked based on potential risk. Of the 159 sediment basin priority zone siting polygons, 45 or 28% of siting locations received high or very high risk ratings with total scores over 100 and up to 170. According to Winona County Planning Department records, there are 23 existing sediment ponds within the project's DNR level 7 sub-watershed. 13 of 23 or 57% of ponds intersected siting polygons and 18 of 23 or 78% of ponds were within 30 meters of siting polygons. There were 5 of 23 or 22% of pond locations not located within 30 meters of a siting polygon. Table 2 and Appendix A identify pointshed sediment priority zone's scoring rank, predictability of existing pond locations, and identification of terrain profile characteristics supportive of sediment damming as determined by the modified ACPF WASCOB tool.

| indicates       | supportin | g terrain fo | or sedii | ment da | imming     |  |
|-----------------|-----------|--------------|----------|---------|------------|--|
| <b>OBJECTID</b> | Rank      | TotalRank    | IXP      | PWI30   | Sed Dam    |  |
| 5               | VERY HIGH | 169.3        | NÔ       | NÔ      | NÓ         |  |
| 17              | VERY HIGH | 156.4        | YES      | YES     | YES        |  |
| 35              | VERY HIGH | 150.4        | NÔ       | NÖ      | NÔ         |  |
| 31              | VERY HIGH | 149.9        | NÔ       | NÔ      | YES        |  |
| 30              | VERY HIGH | 140.6        | NÔ       | NÔ      | NÓ         |  |
| 32              | HIGH      | 134.3        | NÔ       | NÖ      | YES        |  |
| 38              | HIGH      | 133.3        | NÖ       | NÖ      | YES        |  |
| 40              | HIGH      | 131.4        | NÔ       | NÖ      | YES        |  |
| 1               | HIGH      | 130.7        | NÓ       | NÓ      | YES        |  |
| 28              | HIGH      | 129.3        | NÓ       | NÓ      | YES        |  |
| 6               | HIGH      | 128.5        | NÓ       | NÓ      | NÓ         |  |
| 25              | HIGH      | 126.4        | YES      | YES     | YES        |  |
| 15              | HIGH      | 124.2        | NÔ       | NÔ      | YES        |  |
| 4               | HIGH      | 122.9        | YES      | YES     | YES        |  |
| 29              | HIGH      | 119.8        | NÔ       | NÔ      | NÓ         |  |
| 16              | HIGH      | 119.0        | NÔ       | NÔ      | YES        |  |
| 11              | HIĠH      | 117.5        | NÖ       | NÖ      | YES        |  |
| 27              | HIĠH      | 117.3        | NÔ       | NÔ      | YES        |  |
| 7               | HIGH      | 115.6        | NÖ       | NÖ      | YES        |  |
| 2               | HIĠH      | 115.1        | NÔ       | NÔ      | YES        |  |
| 21              | HIGH      | 114.8        | NÔ       | NÔ      | YES        |  |
| 20              | HIGH      | 114.5        | YES      | YES     | NÔ         |  |
| 19              | HIGH      | 113.8        | YES      | YES     | YES        |  |
| 44              | HIGH      | 113.8        | NÔ       | NÔ      | YES        |  |
| 10              | HIGH      | 113.0        | NÓ       | NÓ      | YES        |  |
| 12              | HIĠH      | 112.9        | NÔ       | NÔ      | YES        |  |
| 26              | HIĠH      | 112.2        | NO       | NÖ      | YES        |  |
| 39              | HIGH      | 112.0        | NÖ       | NÖ      | YES        |  |
| 24              | HIGH      | 112.0        | NO       | NÖ      | YES        |  |
| 37              | HIGH      | 111.6        | NO       | NO      | YES        |  |
| 13              | HIGH      | 111.6        | YES      | YES     | YES        |  |
| 3               | HIGH      | 111.0        | NO       | YES     | YES        |  |
| 33              | HIGH      | 110.0        | YES      | YES     | YES        |  |
| 18              | HIGH      | 109.7        | NO       | NO      | YES        |  |
| 23              | HIGH      | 108.8        | NO       | NO      | YES        |  |
| 9               | HIGH      | 107.2        | NO       | YES     | YES        |  |
| 45              | HIGH      | 107.0        | YES      | YES     | YES        |  |
| 42              | HIGH      | 105.3        | NO       | NO      | YES        |  |
| 8               | HIGH      | 104.9        | NO       | NO      | YES        |  |
| 41              | HIGH      | 104.2        | NO       | NO      | YES        |  |
| 36              | HIGH      | 103.5        | NO       | NO      | NU         |  |
| 22              | HIGH      | 103.2        | NO       | NO      | TES        |  |
| 34              |           | 101.4        | NO       | NO      | TES<br>VEC |  |
| 43              | HIGH      | 100.2        | NO       | NO      | TES<br>VEC |  |
| 1/1             |           |              |          |         |            |  |

Table 2. Sediment basin priority locations ranked by total score/risk. IXP (Intersects Existing Ponds), PWI30 (Existing Pond within 30 meters), Sed Dam indicates supporting terrain for sediment damming

Of the 45 siting polygons rated as high or very high, 10 or 22% have record of a sediment basin within 30 meters. 35 or 78% of siting polygons have no basin in place. 29 or 64% of sited polygons rated high or very high with no existing basins within 30 meters also have terrain attributes supporting installation of sediment basin dam structures.

### Discussion

This study employed advanced DTA with 1-meter resolution LiDAR in a region of high relief prone to overland soil loss and nutrient transport. Utilizing SPI signatures, pointshed areas of critical erosive risk from overland flow were created. Field edge boundary buffers presented a zone where implementation of off-field sediment basins could be implemented and least affect displacement of production area. Upslope soil risk was determined by implementing RUSLE modeling. Downslope erosive potential was determined from values of SPI extracted prior to stream flow junctions. The risk to surface water was measured as the minimum overland flow distance from potential basin area to a perennial defined stream network with a tool from the ACPF toolset. Ranked scoring of the RUSLE, SPI, and distance to stream values were weighted according to the Ecological Ranking Tool and combined scoring was attributed to individual priority sediment basin locations. Finally, a modification of the ACPF WASCOB tool was employed to locate potential sediment damming areas which met topographic profile criteria allowing side embankments of 3 meters or more near accumulated flow. Resulting damming areas intersecting sediment basin priority zones were illustrated in a sediment basin priority map.

The ACPF toolset is intended to present all options of conservation practice and the isolation of sediment basins in this study does not imply exclusion of other existing or prescriptive conservation practices. Ideal conservation plans most often consist of combinations of management practices, both sized and located optimally for specific landscape conditions. While the ACPF creators consent to free use and modification of existing tools, there is no implied accuracy of user-modified tools or outputs which applies to the modification of the WASCOB tool in this study.

Future enhancements to this study would include the input of higher precision digitized field boundary maps to define field edge locations and limit missed opportunities. Encroachment of potential pond basins to roadways could be considered within the ACPF toolset. Inclusion of known Karst topographical features and subterranean flow networks may influence siting zones significantly and should be considered and further investigated prior to accepting results. There are many forms of soil loss modeling apart from and within USLE/RUSLE modeling. Use of RUSLE2 on a regional level was data access prohibitive for this study. Advanced SDR analysis for overland transport can include substantial examination of the soil profile dimension not implemented as part of this study.

### Conclusions

The initial siting criteria of SPI signature strength and field edge boundaries appear to have been most influential in sediment basin priority ranking. Firstly, SPI values are determined by a product of flow accumulation and slope. The main areas that appear to have produced the largest SPI values and very high overall rank scores are those that had vast watershed areas resulting in the largest flow accumulations. Larger field locations with main channels draining to the periphery of higher relief areas exhibited the highest overall scores despite not being located closest in proximity to perennial streams. The top 5 overall ranking scores exhibited erodible watershed areas in the top 15 in acreage area. Lesser slopes in these areas appear to encourage intense agricultural production within close field edge proximity to roads and homesteads leading to competition for space with conservation practices such as sediment basin damming. Damming in areas of lesser slope requires more surface area per water volume. Secondarily, another area of high SPI values and high overall rank scores included areas of severe slope in close proximity to perennial streams. Pointsheds in these areas had high soil loss rates but modest soil loss volumes because of the smaller size of the overall watershed. Opportunities for sediment basin damming in these areas is largely dependent on topographic soil profiles and basin size requirements relative to field edges and slope drop-offs.

Existing ponds that were not found to be within mapped priority zones appear to have been mostly missed as a result of errors in field boundaries. Visual observation of aerial images found ponds in areas of no agricultural production that were mapped as active production areas. Existing ponds were found dispersed in both of these types of areas. While sediment basins appear to be productive to various degrees, this study would suggest the historically wide dispersal of existing basins has been primarily a matter of an agricultural producer's prerogative to install them versus a results based prescription. It appears conservation managers could have significant impact on flow accumulation and sediment volume by prioritizing sediment basin installation on large field drainages. Secondarily high scoring areas with high slopes in close

proximity to streams and sensitive biological habitats would represent other target areas of sediment basin priority.

Conservation efforts using advanced technologies have the potential to maximize non-point pollution control benefits while minimizing associated costs. While not intending to be a prescriptive recommendation for a stand-alone management practice, this study isolated potential siting areas of sediment basins to specific priority zones and ranked those areas by their potential erosion risk to perennial streams. This study does not completely overcome a need for in-field surveys and local knowledge for absolute pinpoint siting and engineering design, however, the time, labor, and cost savings of focused practice siting as part of the decision process of the conservation planner is substantial. A location priority map of BMP siting produced with a GIS is of great benefit when communicating BMP spatial relationships, distribution, and prioritization to producers and financial stakeholders.

### Acknowledgements

I would like to thank Dr. David McConville, John Ebert, and Greta Poser for their leadership and guidance in GIS studies at Saint Mary's University of Minnesota. Thanks to the Winona County Planning Department for insight and use of local data. Special thanks to my wife Jessica for the patience and support through this extension of my education. I explored numerous paths in this study and there are many others that assisted with ideas and contacts that I am grateful for.

## References

Edwards, C. L., Shannon, R. D., and Jarrett, A. R. 1999. Sedimentation Basin Retention Efficiencies for Sediment, Nitrogen, and Phosphorus from Simulated Agricultural Runoff. *Transactions of the ASABE*, 42(2), 403-409. Received from Minitex Library Information Network, July 10, 2015.

- Galzki, J., Birr, A., and Mulla, D. 2011. Identifying Critical Agricultural Areas with Three-Meter LiDAR Elevation Data for Precision Conservation. *Journal of Soil and Water Conservation*. *66*(6), 423-430. Retrieved April 15, 2016 from EbscoHost.
- Houston Engineering. 2016. Prioritize, Target, Measure Application (PTMapp) Desktop Toolbar Users Guide. Retrieved March 28, 2016 from http://ptmapp .rrbdin.org/files/PTMApp\_User\_Guide.p df.
- Johnson, D. 2008. Chapters 7-8 Feedlots and Agricultural Erosion. Minnesota 2008-2012 Non-Point Source Management Program Plan. Retrieved July 10, 2015 from Minnesota Pollution Control.
- Lim, K. J., Sagong, M., Engel, B. A., Tang,
  Z., Choi, J., and Kim, K. S. 2005. GIS-Based Sediment Assessment Tool. *Catena*, 64(1), 61-80. Retrieved June 10, 2015 from ScienceDirect.
- Maathuis, B. H. P., and Wang, L. 2006. Digital Elevation Model Based Hydro-Processing. *Geocarto International*, 21(1), 21- 26. Retrieved February 13, 2016 from http://www.geocarto.com.hk /cgi-bin/pages1/mar06/3\_Maathuis.pdf.
- Moore, I. D., Grayson, R. B., and Ladson, A. R. 1991. Digital Terrain Modeling: A Review of Hydrological, Geomorphological, and Biological Applications. *Hydrological Processes 5*, 3-30.
- Pimentel, D. 2006. Soil Erosion: a Food and Environmental Threat. *Environment, Development and Sustainability*, 8(1), 119-137. Retrieved June 17, 2015 from

http://www.thebattlecreekalliance.org /uploads/Pimentel\_2006.pdf.

- Porter, S. A., Tomer, M. D., James, D. E., and Boomer, K. M. B. 2015. Agricultural Conservation Planning Framework: ArcGIS®Toolbox User's Manual. Retrieved February 12, 2016 from Agricultural Research Service, National Laboratory for Agriculture and the Environment, USDA.
- Renard, K. G., Weesies, G. A., McCool, D.
  K., and Yoder, D. C. 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). USDA Agriculture Handbook, 703.
  Retrieved June 16, 2015 from United States Department of Agriculture.
- Renard, K. G., Yoder, D. C., Lightle, D. T., and Dabney, S. M. 2011. Universal Soil Loss Equation and Revised Universal Soil Loss Equation. Handbook of Erosion Modeling. Blackwell Publishing Ltd., Oxford, UK, 137-167. Retrieved June 18, 2015 from Agricultural Research Service, USDA.
- Stout, J. C., Belmont, P., Schottler, S. P., and Willenbring, J. K. 2014. Identifying Sediment Sources and Sinks in the Root River, Southeastern Minnesota. *Annals of the Association of American Geographers*, 104(1), 20-39. Retrieved June 29, 2015 from EbscoHost.
- Tarboton, D. G. 2016. Terrain Analysis Using Digital Elevation Models (TauDEM). Utah Water Research Laboratory, Utah State University. Retrieved March 10, 2016 from http://hydrology.usu.edu/taudem /taudem5/index.html.
- Tomer, M. D., Porter, S. A., Boomer, K. M.
  B., James, D. E., Kostel, J. A., Helmers,
  M. J., Isenhart, T. M., and McLellan, E.
  2015. Agricultural Conservation Planning
  Framework: 1. Developing Multipractice
  Watershed Planning Scenarios and

Assessing Nutrient Reduction Potential. *Journal of Environmental Quality*. 44(3), 754-767.

- Tomer, M. D., Porter, S. A., James, D. E., Boomer, K. M., Kostel, J. A., and McLellan, E. 2013. Combining Precision Conservation Technologies into a Flexible Framework to Facilitate Agricultural Watershed Planning. *Journal of Soil and Water Conservation*. 68(5), 113A-120A. Retrieved February 13, 2016 from http://www.jswconline.org/content/ 68/5/113A.full.pdf.
- Wilson, G., Mulla, D., Timm, D., and Klang, J. 2014. Final Project Report for Identifying Priority Management Zones for Best Management Practice Implementation in Impaired Watersheds. Minnesota Department of Agriculture. Retrieved March 14, 2016 from https://water-research-library.mda.state. mn.us/pages/application/filedownload. xhtml?recId=213800.
- Yitayew, M., Pokrzywka, S. J., and Renard, K. G. 1999. Using GIS for Facilitating Erosion Estimation. *Applied Engineering in Agriculture*, *15*, 295-302. Retrieved June 13, 2015 from Agricultural Research Service, USDA.
- Yoder, D. C., Foster, G. R., Weesies, G. A., Renard, K. G., McCool, D. K., and Lown, J. B. 2004. Evaluation of the RUSLE Soil Erosion Model. *Agricultural Non-Point Source Water Quality Models: Their Use and Application. Southern Cooperative Series Bulletin, 398,* 107-116. Retrieved June 19, 2015 from the Southern Cooperative Series Bulletin.
- Zimmerman, J. K., Vondracek, B., and Westra, J. 2003. Agricultural Land Use Effects on Sediment Loading and Fish Assemblages in Two Minnesota (USA) Watersheds. *Environmental Management*, *32*(1), 93-105. Retrieved from Minitex Library Information Network, July 12, 2015.

Appendix A. The following table represents the full sediment basin priority zone areas as determined by this study. Total Rank was determined by the summation of SPI50 (Stream Power Index rank multiplied by a weighting factor of 50), SDR100 (estimated sediment delivery rank as determined by ratio and RUSLE multiplied by a weighting factor of 100), and D2S50 (distance to stream rank multiplied by a factor of 50). IXP (Intersects Existing Ponds), PWI30 (Existing Ponds within 30 meters), Sed Dam indicates supporting terrain for sediment damming. X,Y coordinates for location are indicative of polygon centroids. Oddly shaped or multipart polygon centroids can occur outside of polygon boundaries.

| OBJID | Gridcode | Rating    | TotalRank | SPI_50 | SDR_100 | D2S_50 | IXP | PWI30  | SedDam | X_UTM         | Y_UTM         |
|-------|----------|-----------|-----------|--------|---------|--------|-----|--------|--------|---------------|---------------|
| 23    | 503      | VERY HIGH | 169.3     | 39.73  | 100.00  | 29.54  | NO  | NO     | NO     | 594825.605282 | 4869682.04197 |
| 49    | 1325     | VERY HIGH | 156.4     | 45.43  | 84.28   | 26.65  | YES | YES    | YES    | 594787.946362 | 4875803.72604 |
| 102   | 2609     | VERY HIGH | 150.4     | 38.05  | 79.38   | 33.01  | NO  | NO     | NO     | 592367 475346 | 4872245 12772 |
| 80    | 2462     | VERV HIGH | 1/0.0     | 50.00  | 52.97   | 46.91  | NO  | NO     | VES    | 503851 287786 | 4872824 21630 |
| 09    | 2402     | VERY HIGH | 149.9     | 44.54  | 19.25   | 40.91  | NO  | NO     | NO     | 502164 622640 | 4872824.21039 |
| 01    | 2520     | VERTINOI  | 124.2     | 44.04  | 48.33   | 47.73  | NO  | NO     | VES    | 504760.017595 | 4875277.01451 |
| 91    | 2312     | HIGH      | 134.3     | 45.20  | 64.13   | 26.94  | NO  | NO     | 1ES    | 594/09.01/585 | 48/32/7.91431 |
| 126   | 2640     | HIGH      | 135.5     | 36.83  | /5.11   | 21.34  | NO  | NO     | YES    | 593476.728400 | 48/0181.00150 |
| 132   | 2647     | HIGH      | 131.4     | 30.71  | 64.70   | 35.96  | NO  | NO     | YES    | 595457.095829 | 4870017.00029 |
| 8     | 160      | HIGH      | 130.7     | 43.81  | 39.26   | 47.64  | NO  | NO     | YES    | 595039.932446 | 4871116.70861 |
| 78    | 2160     | HIGH      | 129.3     | 47.27  | 37.70   | 44.33  | NO  | NO     | YES    | 594698.581711 | 4871802.72310 |
| 24    | 595      | HIGH      | 128.5     | 43.29  | 47.93   | 37.24  | NO  | NO     | NO     | 594166.402628 | 4873488.00868 |
| 73    | 2069     | HIGH      | 126.4     | 43.04  | 33.36   | 50.00  | YES | YES    | YES    | 593509.521367 | 4872212.95698 |
| 43    | 1147     | HIGH      | 124.2     | 32.48  | 45.76   | 46.00  | NO  | NO     | YES    | 594746.858240 | 4873043.90104 |
| 21    | 397      | HIGH      | 122.9     | 49.40  | 34.72   | 38.73  | YES | YES    | YES    | 595682.582397 | 4873945.21539 |
| 82    | 2273     | HIGH      | 119.8     | 44.75  | 39.21   | 35.79  | NO  | NO     | NO     | 594733.034036 | 4873474.79940 |
| 47    | 1293     | HIGH      | 119.0     | 33.39  | 48.98   | 36.60  | NO  | NO     | YES    | 592736.477906 | 4872991.23092 |
| 37    | 984      | HIGH      | 117.5     | 30.09  | 53.25   | 34.14  | NO  | NO     | YES    | 596755.898189 | 4873221.47780 |
| 77    | 2102     | HIGH      | 117.3     | 41.14  | 39.37   | 36.75  | NO  | NO     | YES    | 596396.704333 | 4874825,31954 |
| 25    | 604      | HIGH      | 115.6     | 32 71  | 50.79   | 32.07  | NO  | NO     | YES    | 597508 260775 | 4873923 16060 |
| 16    | 305      | HIGH      | 115.0     | 20.58  | 50.40   | 35.15  | NO  | NO     | VES    | 505867 567755 | 4871396 11700 |
| 63    | 1827     | HIGH      | 114.8     | 29.58  | 51.56   | 24.29  | NO  | NO     | VES    | 595038 858407 | 4874450 60159 |
| 60    | 1796     | HIGH      | 114.5     | 19.15  | 22.74   | 42.29  | VEC | VES    | NO     | 504217 701205 | 4874450.00155 |
| 57    | 1780     | HIGH      | 114.3     | 46.45  | 23.74   | 42.30  | VEC | 1E3    | NO     | 502012 404220 | 4073213.04013 |
| 57    | 1707     | HIGH      | 113.8     | 35.40  | 37.85   | 40.56  | IES | HES NO | 1ES    | 592912.494220 | 48/2/81.519/0 |
| 153   | 2807     | HIGH      | 113.8     | 41.62  | 30.67   | 35.51  | NO  | NO     | YES    | 596144.832276 | 48/1586.051/1 |
| 52    | 8/1      | HIGH      | 113.0     | 42.17  | 28.24   | 42.62  | NO  | NO     | YES    | 595751.808322 | 48/2024.28065 |
| 38    | 989      | HIGH      | 112.9     | 40.60  | 35.21   | 37.04  | NO  | NO     | YES    | 594888.514386 | 4873692.37352 |
| 74    | 2075     | HIGH      | 112.2     | 42.12  | 45.23   | 24.84  | NO  | NO     | YES    | 597966.141717 | 4873674.59554 |
| 129   | 2644     | HIGH      | 112.0     | 41.84  | 32.37   | 37.80  | NO  | NO     | YES    | 595908.375032 | 4872481.98420 |
| 71    | 1975     | HIGH      | 112.0     | 44.18  | 32.40   | 35.42  | NO  | NO     | YES    | 597365.483936 | 4873516.19537 |
| 108   | 2618     | HIGH      | 111.6     | 46.61  | 29.23   | 35.76  | NO  | NO     | YES    | 595392.996313 | 4875527.12391 |
| 40    | 1065     | HIGH      | 111.6     | 42.02  | 33.02   | 36.55  | YES | YES    | YES    | 595837.080578 | 4874200.51991 |
| 20    | 394      | HIGH      | 111.0     | 38.06  | 31.50   | 41.46  | NO  | YES    | YES    | 598253.652728 | 4874780.25619 |
| 97    | 2578     | HIGH      | 110.0     | 17.83  | 69.16   | 23.02  | YES | YES    | YES    | 593676.576627 | 4870094.60715 |
| 52    | 1385     | HIGH      | 109.7     | 37.22  | 43.84   | 28.61  | NO  | NO     | YES    | 596694.138372 | 4876620.21539 |
| 70    | 1963     | HIGH      | 108.8     | 36.47  | 30.10   | 42.20  | NO  | NO     | YES    | 595817.155773 | 4870882.16150 |
| 31    | 844      | HIGH      | 107.2     | 24.99  | 39.23   | 42.93  | NO  | YES    | YES    | 592937.962647 | 4872396.26671 |
| 157   | 2899     | HIGH      | 107.0     | 42.58  | 34.07   | 30.32  | YES | YES    | YES    | 595348.634133 | 4874586.59869 |
| 148   | 2673     | HIGH      | 105.3     | 34.04  | 39.58   | 31.70  | NO  | NO     | YES    | 596777,791995 | 4872994.67570 |
| 26    | 640      | HIGH      | 104.9     | 41.41  | 37.93   | 25.54  | NO  | NO     | YES    | 596691,553558 | 4876908.89680 |
| 145   | 2661     | HIGH      | 104.2     | 41.37  | 21.30   | 41.57  | NO  | NO     | VES    | 598138 683074 | 4874737 68510 |
| 103   | 2611     | HIGH      | 103.5     | 30.25  | 14.44   | 40.83  | NO  | NO     | NO     | 593646 151545 | 4872350 62204 |
| 105   | 1994     | HIGH      | 102.2     | 46.42  | 20.58   | 49.83  | NO  | NO     | VES    | 50/120 626599 | 4871207 57910 |
| 00    | 2604     | HIGH      | 103.2     | 40.42  | 29.58   | 21.23  | NO  | NO     | 1E3    | 594120.030388 | 4871297.37819 |
| 98    | 2604     | HIGH      | 101.4     | 45.17  | 22.38   | 33.04  | NO  | NO     | 1ES    | 595095.947550 | 4874741.43474 |
| 132   | 2802     | HIGH      | 101.2     | 39.25  | 27.40   | 54.40  | NO  | NO     | 1ES    | 595810.494599 | 48/3341.0/080 |
| 42    | 1133     | HIGH      | 100.5     | 20.11  | 38.82   | 41.40  | NO  | NO     | 1ES    | 590101.24/50/ | 48/4551.5084/ |
| 114   | 2624     | MODERATE  | 99.6      | 40.51  | 18.75   | 40.30  | NO  | NO     | YES    | 59/053.7/5634 | 48/602/.9838/ |
| 104   | 2612     | MODERATE  | 99.4      | 37.77  | 19.40   | 42.22  | NO  | NO     | YES    | 595059.102922 | 48/3180.24016 |
| 9     | 203      | MODERATE  | 99.3      | 26.94  | 30.91   | 41.42  | NO  | NO     | YES    | 595227.745588 | 48/0196.90/6/ |
| 44    | 1167     | MODERATE  | 98.7      | 41.55  | 30.61   | 26.49  | NO  | NO     | NO     | 596935.448165 | 4872664.76909 |
| 61    | 1802     | MODERATE  | 98.0      | 35.05  | 21.37   | 41.63  | NO  | NO     | YES    | 594689.026184 | 4870823.47510 |
| 85    | 2292     | MODERATE  | 97.4      | 34.62  | 14.05   | 48.69  | NO  | NO     | YES    | 593859.046521 | 4872280.28027 |
| 113   | 2623     | MODERATE  | 97.4      | 33.81  | 45.08   | 18.47  | NO  | NO     | YES    | 596675.670252 | 4877378.04287 |
| 124   | 2638     | MODERATE  | 97.2      | 35.45  | 25.19   | 36.53  | NO  | NO     | NO     | 595976.414582 | 4871753.34852 |
| 28    | 741      | MODERATE  | 96.7      | 44.69  | 12.68   | 39.33  | NO  | NO     | YES    | 595854.833950 | 4876039.75549 |
| 127   | 2642     | MODERATE  | 96.4      | 30.35  | 26.02   | 40.03  | NO  | NO     | YES    | 595848.286066 | 4870666.28157 |
| 75    | 2083     | MODERATE  | 95.6      | 33.17  | 23.51   | 38.91  | NO  | NO     | NO     | 592720.521083 | 4872408.18437 |
| 99    | 2605     | MODERATE  | 95.4      | 40.04  | 38.26   | 17.07  | NO  | NO     | YES    | 594408.990135 | 4874436.14037 |
| 90    | 2507     | MODERATE  | 94.9      | 36.91  | 18.04   | 39.95  | NO  | NO     | YES    | 597293.916458 | 4875961.40115 |
| 55    | 1595     | MODERATE  | 94.8      | 18.77  | 26.26   | 49.80  | NO  | YES    | YES    | 593502.747562 | 4872516.02691 |
| 4     | 92       | MODERATE  | 93.9      | 37.68  | 20.32   | 35.90  | NO  | NO     | YES    | 594549,648839 | 4870241.35056 |
| 130   | 2645     | MODERATE  | 93.9      | 29.02  | 37.44   | 27.42  | NO  | NO     | YES    | 596306,650113 | 4872675.96429 |
| 59    | 1773     | MODERATE  | 93.2      | 30.32  | 14 91   | 48.00  | NO  | NO     | YES    | 595542 672180 | 4871558 04813 |
| 135   | 2650     | MODERATE  | 93.2      | 40.91  | 41.87   | 10.30  | YES | YES    | YES    | 595066 572817 | 4876908 77006 |
| 135   | 1244     | MODERATE  | 02.0      | 43.55  | 21.71   | 27.74  | NO  | NO     | NO     | 505262 000540 | 4874020 71420 |
| 40    | 1240     | MODERATE  | 95.0      | 43.33  | 11.27   | 41.06  | NO  | NO     | VES    | 594634 207454 | 40/4030./1039 |
| 146   | 1018     | MODERATE  | 91.3      | 30.23  | 7.26    | 41.90  | NO  | NO     | 1 Eð   | 506141 250924 | 40/2230.38203 |
| 140   | 2002     | MODERATE  | 91.4      | 41.95  | 1.50    | 42.10  | NO  | NO     | IES    | 590141.259834 | 48/3030.1033/ |
| 15    | 295      | MODERATE  | 91.2      | 16.34  | 28.29   | 40.54  | NO  | NO     | YES    | 594885.993340 | 48/19/0.83604 |
| 141   | 2656     | MODERATE  | 91.1      | 57.44  | 14.63   | 39.04  | NO  | NO     | YES    | 598514.985295 | 48/4680.45469 |
| 7     | 125      | MODERATE  | 90.9      | 38.28  | 20.58   | 31.99  | NO  | NO     | YES    | 594151.678232 | 4870721.11585 |
| 79    | 2166     | MODERATE  | 90.2      | 30.76  | 12.16   | 47.23  | NO  | NO     | YES    | 594489.102545 | 4873079.31066 |
| 83    | 2279     | MODERATE  | 90.1      | 36.43  | 42.64   | 11.00  | NO  | NO     | YES    | 595323.080848 | 4877334.76027 |
| 22    | 471      | MODERATE  | 89.7      | 36.10  | 34.14   | 19.45  | NO  | NO     | YES    | 595792.090397 | 4877137.36322 |
| 2     | 37       | MODERATE  | 89.6      | 28.31  | 20.46   | 40.80  | NO  | NO     | NO     | 594928.278275 | 4870476.51693 |
| 115   | 2626     | MODERATE  | 89.3      | 40.16  | 7.78    | 41.38  | NO  | NO     | YES    | 596090.354038 | 4873174.51103 |

| OBJID     | gridcode | Rating   | TotalRank    | SPI_50 | SDR_100 | D2S_50 | IXP      | PWI30    | SedDam     | X_UTM         | Y_UTM          |
|-----------|----------|----------|--------------|--------|---------|--------|----------|----------|------------|---------------|----------------|
| 36        | 892      | MODERATE | 88.8         | 43.49  | 10.38   | 34.92  | NO       | NO       | YES        | 597925.114399 | 4874307.40392  |
| 76        | 2095     | MODERATE | 88.7         | 35.43  | 11.33   | 41.96  | NO       | NO       | YES        | 594984.842735 | 4872220.22307  |
| 58        | 1742     | MODERATE | 88.6         | 27.64  | 26.77   | 34.17  | NO       | NO       | NO         | 597484.889162 | 4873235.17897  |
| - 111     | 2621     | MODERATE | 88.1         | 33.17  | 22.14   | 32.81  | NO       | NO       | YES        | 596798.199436 | 48/6381.40/01  |
| 55<br>142 | 2658     | MODERATE | 87.5         | 35.15  | 19.71   | 32.60  | NO       | NO       | YES        | 5946/8.6/6128 | 4869995.25350  |
| 142       | 2038     | MODERATE | 86.9         | 39.15  | 34.34   | 13 39  | NO       | NO       | VES        | 594054 540200 | 4874309 30989  |
| 5         | 101      | MODERATE | 86.3         | 37.12  | 20.01   | 29.12  | NO       | NO       | YES        | 594082.337648 | 4871714.63671  |
| 54        | 1506     | MODERATE | 85.9         | 25.16  | 21.75   | 38.97  | NO       | NO       | YES        | 595927.057815 | 4874805.47356  |
| 84        | 2285     | MODERATE | 85.5         | 31.24  | 28.05   | 26.25  | NO       | NO       | YES        | 597839.013346 | 4873748.60106  |
| 56        | 1623     | MODERATE | 85.5         | 39.73  | 9.68    | 36.12  | NO       | NO       | YES        | 594341.580859 | 4872116.29301  |
| 1         | 18       | MODERATE | 85.3         | 33.12  | 15.77   | 36.38  | NO       | NO       | NO         | 593756.484502 | 4873184.38719  |
| 72        | 1990     | MODERATE | 83.8         | 44.64  | 1.52    | 37.63  | NO       | NO       | NO         | 595576.918139 | 4872403.90965  |
| 131       | 2646     | MODERATE | 83.8         | 31.58  | 29.11   | 23.09  | NO       | NO       | YES        | 596474.734015 | 4872138.26070  |
| 151       | 2/98     | MODERATE | 83.1         | 32.25  | 9.45    | 35.03  | NO       | NO       | VES        | 594872 208619 | 4870201 20172  |
| 112       | 2622     | MODERATE | 82.9         | 39.09  | 2.53    | 41.27  | NO       | NO       | YES        | 596107.380271 | 4875965.51969  |
| 144       | 2660     | MODERATE | 82.2         | 25.73  | 13.16   | 43.34  | NO       | NO       | NO         | 597877.562393 | 4874736.24652  |
| 13        | 256      | MODERATE | 78.7         | 25.79  | 20.22   | 32.64  | NO       | NO       | YES        | 593674.430210 | 4873540.97705  |
| 86        | 2309     | MODERATE | 76.8         | 32.39  | 18.69   | 25.67  | NO       | NO       | YES        | 595047.954966 | 4876291.50080  |
| 48        | 1296     | MODERATE | 76.7         | 31.50  | 7.79    | 37.37  | NO       | NO       | YES        | 595433.555644 | 4875182.80672  |
| 116       | 2627     | MODERATE | 75.0         | 26.85  | 4.55    | 43.64  | NO       | NO       | YES        | 595615.947687 | 4872647.36580  |
| 02        | 2/56     | MODERATE | 74.5         | 24.94  | 5 79    | 30.30  | NO       | NO       | NO<br>VES  | 594906.041204 | 4869952.21610  |
| 149       | 2740     | MODERATE | 74.5         | 26.43  | 7,71    | 40.02  | NO       | NO       | YES        | 595906.855480 | 4872841 88015  |
| 123       | 2636     | MODERATE | 74.0         | 23.33  | 9.13    | 41.56  | YES      | YES      | YES        | 594604.315729 | 4871638.43863  |
| 107       | 2617     | MODERATE | 73.9         | 28.56  | 9.35    | 35.94  | NO       | NO       | NO         | 595603.947341 | 4875988.51372  |
| 95        | 2545     | MODERATE | 71.9         | 28.33  | 4.21    | 39.39  | NO       | NO       | YES        | 594498.969123 | 4872231.03510  |
| 120       | 2633     | MODERATE | 71.5         | 39.03  | 14.42   | 18.06  | NO       | NO       | NO         | 595382.699358 | 4876624.03518  |
| 155       | 2854     | MODERATE | 71.0         | 24.86  | 18.54   | 27.63  | NO       | NO       | YES        | 594928.299415 | 4875320.33329  |
| 93        | 2527     | MODERATE | 70.9         | 27.64  | 23.34   | 19.88  | NO       | NO       | YES        | 594552.558832 | 4874883.89801  |
| 101       | 2607     | MODERATE | 70.4         | 29.53  | 31.80   | 9.10   | NO       | NO       | NO         | 593780.175584 | 4874408.99559  |
| 155       | 2648     | MODIOW   | 70.4<br>69.7 | 20.40  | 1.03    | 37.30  | NO       | NO       | IES<br>VES | 595700.745908 | 4875130.78113  |
| 140       | 2033     | MODLOW   | 69.4         | 33.66  | 24.10   | 11.67  | NO       | NO       | YES        | 596020 507340 | 4877701 58784  |
| 6         | 111      | MOD LOW  | 69.3         | 31.24  | 30.30   | 7.79   | NO       | NO       | YES        | 594826.961870 | 4876997.07655  |
| 10        | 220      | MOD LOW  | 68.7         | 30.39  | 8.32    | 29.95  | NO       | YES      | YES        | 597909.501006 | 4874104.32567  |
| 106       | 2615     | MOD LOW  | 68.2         | 25.08  | 17.57   | 25.53  | NO       | NO       | YES        | 594767.625160 | 4874892.58166  |
| 87        | 2312     | MOD LOW  | 67.6         | 31.98  | 10.86   | 24.72  | NO       | NO       | YES        | 594924.157968 | 4876312.22334  |
| 156       | 2866     | MOD LOW  | 67.5         | 32.20  | 16.05   | 19.26  | YES      | YES      | YES        | 596484.829341 | 4877411.94325  |
| 143       | 2659     | MOD LOW  | 67.1         | 19.00  | 8.55    | 39.59  | NO       | NO       | YES        | 597411.875182 | 4874512.15801  |
| 134       | 2649     | MOD LOW  | 66.9         | 25.16  | 1.81    | 39.94  | NO       | NO       | NO         | 596472.860099 | 4874544.46978  |
| 34        | 2814     | MODLOW   | 66.3         | 25.69  | 9.79    | 30.79  | NO       | NO       | VES        | 595214 030418 | 48775267 54621 |
| 122       | 2635     | MODLOW   | 66.2         | 35.76  | 10.97   | 19.43  | NO       | NO       | YES        | 595405.944242 | 4876442.55294  |
| 109       | 2619     | MOD LOW  | 65.7         | 33.16  | 0.00    | 32.52  | NO       | NO       | YES        | 595175.141902 | 4875637.52030  |
| 96        | 2549     | MOD LOW  | 65.5         | 28.49  | 6.64    | 30.39  | NO       | NO       | NO         | 595361.536868 | 4873877.28836  |
| 41        | 1125     | MOD LOW  | 65.4         | 14.76  | 19.61   | 31.08  | NO       | NO       | NO         | 592251.933992 | 4872739.39143  |
| 27        | 715      | MOD LOW  | 65.4         | 21.36  | 14.85   | 29.19  | NO       | NO       | YES        | 595049.023478 | 4875302.55495  |
| 110       | 2620     | MOD LOW  | 64.7         | 28.46  | 5.48    | 30.75  | NO       | NO       | YES        | 595424.776635 | 4875987.92325  |
| 30        | 823      | MODLOW   | 64.5         | 26.25  | 9.75    | 28.49  | NO       | NO       | NO         | 595311.958655 | 4876094.12925  |
| 119       | 2632     | MODLOW   | 63.6         | 37.61  | 3.90    | 22.09  | NO       | NO       | VES        | 595685 267555 | 4876319 77184  |
| 139       | 2654     | MOD LOW  | 63.3         | 21.59  | 3.62    | 38.04  | NO       | NO       | YES        | 596746.435398 | 4876206.86826  |
| 64        | 1833     | MOD LOW  | 62.6         | 21.56  | 17.87   | 23.11  | NO       | NO       | YES        | 596622.639086 | 4872303.25486  |
| 147       | 2671     | MOD LOW  | 62.4         | 22.20  | 11.81   | 28.38  | YES      | YES      | YES        | 596263.568965 | 4872819.21755  |
| 128       | 2643     | MOD LOW  | 61.8         | 0.00   | 32.82   | 28.93  | NO       | NO       | NO         | 595874.557584 | 4869918.96981  |
| 138       | 2653     | MOD LOW  | 61.6         | 21.79  | 0.37    | 39.42  | NO       | NO       | YES        | 595597.447077 | 4875422.92600  |
| 67        | 1893     | MOD LOW  | 61.4         | 1.61   | 13.08   | 46.75  | NO       | NO       | YES        | 594965.370750 | 4870852.93105  |
| 09<br>14  | 280      | MODIOW   | 59.8<br>57.7 | 28.95  | 3.98    | 24 75  | NO       | NO       | YES        | 595722 830117 | 4876378 39673  |
| 3         | 79       | MODLOW   | 57.5         | 28,22  | 23.94   | 5.32   | YES      | YES      | YES        | 594621,247873 | 4877130.22576  |
| 65        | 1857     | MOD LOW  | 56.5         | 29.73  | 15.26   | 11.54  | NO       | YES      | NO         | 594016.566437 | 4875034.95313  |
| 117       | 2629     | MOD LOW  | 56.1         | 22.46  | 28.18   | 5.43   | NO       | NO       | NO         | 594522.185623 | 4877472.77620  |
| 68        | 1906     | MOD LOW  | 55.4         | 5.86   | 13.22   | 36.32  | NO       | NO       | YES        | 597910.326154 | 4874414.44584  |
| 81        | 2261     | MOD LOW  | 54.3         | 31.18  | 8.61    | 14.54  | NO       | NO       | YES        | 596129.508133 | 4877523.86700  |
| 137       | 2652     | MOD LOW  | 54.0         | 22.38  | 3.30    | 28.29  | NO       | NO       | YES        | 594973.175820 | 4874934.95081  |
| 121       | 2634     | MOD LOW  | 53.5         | 27.43  | 6.17    | 19.90  | NO<br>NO | NO<br>NO | YES        | 595517.403757 | 48/6367.19492  |
| 55<br>12  | 8/4      | MODIOW   | 52.0         | 25.48  | 22.47   | 24.60  | NO       | NO       | NU<br>VES  | 594720 116510 | 4876079 54940  |
| 12        | 328      | MODLOW   | 52.2         | 15.97  | 11.03   | 25.18  | NO       | NO       | YES        | 593819.440222 | 4870342.46688  |
| 80        | 2210     | MOD LOW  | 51.5         | 7.35   | 28.63   | 15.51  | NO       | NO       | YES        | 594311.726593 | 4875070.82592  |
| 50        | 1360     | MOD LOW  | 51.2         | 25.33  | 16.38   | 9.52   | NO       | NO       | YES        | 595056.404204 | 4877311.44574  |
| 118       | 2631     | MOD LOW  | 49.5         | 24.45  | 10.05   | 14.98  | NO       | NO       | YES        | 595353.587505 | 4876905.57698  |
| 51        | 1381     | MOD LOW  | 48.8         | 0.91   | 9.79    | 38.09  | NO       | NO       | NO         | 594444.987807 | 4870688.48999  |
| 94        | 2540     | MOD LOW  | 48.7         | 24.03  | 14.22   | 10.40  | NO       | NO       | NO         | 593823.961271 | 4874635.54440  |
| 18        | 344      | MOD LOW  | 47.9         | 8.56   | 3.62    | 35.73  | NO       | NO       | NO         | 595517.593074 | 4870059.22326  |
| 123       | 2039     | MODIOW   | 43.6         | 21.24  | 1 3.23  | 21.27  | NO       | NO       | NO         | 594659 640179 | 4874438 32500  |
| 105       | 2614     | MODILOW  | 43.3         | 23.02  | 19,17   | 1.14   | NO       | NO       | NO         | 593352,732240 | 4873903.23584  |
| 11        | 224      | MOD LOW  | 40.7         | 6.22   | 8.93    | 25.58  | NO       | NO       | NO         | 594837.473380 | 4873896.92604  |
| 45        | 1194     | LOW      | 32.2         | 8.43   | 6.92    | 16.82  | NO       | NO       | NO         | 593173.990430 | 4870963.48811  |
| 39        | 1038     | LOW      | 26.6         | 1.46   | 3.16    | 21.99  | NO       | NO       | YES        | 593430.184559 | 4870559.73177  |
| 35        | 880      | LOW      | 18.0         | 10.41  | 3.95    | 3.68   | NO       | NO       | YES        | 593531.274544 | 4874609.66777  |
| 19        | 369      | LOW      | 7.8          | 2.50   | 5.32    | 0.00   | NO       | NO       | NO         | 593385.563196 | 4874852.22740  |