
  

________________________________________________________________________ 
Kapoor, P. 2019. Land Cover Classification to Identify Wetlands Using Machine Learning. Volume 22, Papers 

in Resource Analysis. 11 pp. Saint Mary’s University of Minnesota University Central Services Press. Winona, 

MN. Retrieved (date) http://www.gis.smumn.edu 

 

Land Cover Classification to Identify Wetlands Using Machine Learning  

 

Prerna Kapoor 

Department of Resource Analysis, Saint Mary’s University of Minnesota, Minneapolis, MN 

55404  

 

Keywords: Image Classification, Supervised Classification, GIS (Geographic Information 

Systems), Wetlands, CIR (Color-Infrared), North Dakota 

 

Abstract 

 

Wetlands provide a variety of ecological and economic functions that include water quality 

improvement, flood regulation and protection, groundwater recharge, shoreline stabilization, fish 

and wildlife habitat, agriculture production, aesthetics and biological productivity. Earlier 

traditional work on wetland extent assessment used relatively complex methods to compile 

wetland inventories (literature reviews, map interpretation, and digitizing), often giving 

incompatible and inconsistent results. Recent advances in sensor design and application have 

made remote sensing indispensable for wetland monitoring. For example, high resolution aerial 

imagery like National Agricultural Imagery Program (NAIP) and Color Infrared (CIR) imagery 

are used to distinguish wetlands. This study focuses on analyzing land cover classification to 

identify wetlands using machine learning. NAIP and CIR imagery were used to identify 

wetlands. After which, pixel-based supervised classifier methods were used as part of machine 

learning tools and a confusion matrix was calculated to find accuracy results of the three pixel-

based supervised classifier methods. Overall, Random Trees Classifier had a substantially high 

level of accuracy compared to other classifier methods like Maximum Likelihood and Support 

Vector Machine. It means more number of wetlands were correctly identified using the Random 

Trees Classifier method. This study also helped to understand advantages of using machine 

learning, which is less time consuming in comparison to the manual process of identifying 

wetlands. 

                                                                                                                                        

Introduction 

 

Wetlands are valuable natural resources 

that provide many ecological services to 

both flora and fauna. Their benefits are a 

result of the natural hydrological and 

biogeochemical processes carried out in 

these ecosystems. These processes, which 

are sometimes called wetland functions, 

include hydraulic storage and recharge, 

bio-geochemical transformation, biomass 

production, and habitat (Marton, Creed, 

Lewis, Lane, Basu, Cohen, and Craft, 

2015). In addition, these habitats are 

important forms of economic resources in 

many countries in the form of recreation, 

fishing, waterfowl hunting, and animal 

grazing (Marton et al., 2015). In recent 

times, wetlands have also become a 

popular topic in discussions of climate 

change because they contain 12% of the 

global carbon pool. Over time, wetlands 

have been drained, dredged, filled, leveled, 

and flooded to the extent that less than half 

of the original acreage remains (Dahl, 

2000). Traditionally, wetlands are 

delineated using ground surveys. 

However, the surveys are difficult and 

time consuming (Yasouka, Yamagata, 

Tamura, Sugita, Pornprasertchai, Polngam, 
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Sripumin, Oguma, and Li, 1995). Remote 

sensing is one of the technologies that can 

provide cost and time-effective solutions 

to mitigate these problems (Goldberg, 

1998). In addition, remote sensing 

technologies can supply the following 

information: (1) extent of wetlands, (2) 

identify the wetland resource as to type, 

(3) characterize the general wetland land 

cover type, (4) identify submergent and 

emergent wetlands. 

Recognizing the importance of 

wetlands, Artificial Intelligence (AI) based 

extraction models have been recognized to 

discover patterns and images. Therefore, 

the goal of the current project is to analyze 

pixel-based supervised classifier methods 

to identify wetlands using machine 

learning and remote sensing in North 

Dakota. The specific goal was to 

investigate the accuracy levels and 

limitations of the automated methods of 

mapping wetlands and to discuss the 

implications of wetland mapping. Results 

of the study are intended to provide an 

evaluation of pixel-based supervised 

approaches to analyze an efficient way of 

wetland mapping. 

 

Study Area 

 

Study area selected for this project is 

peninsular land located to the south of 

Sanish and New Town of Mountrail 

County in North Dakota (Figure 1). This 

study area was selected because it has both 

glaciated and unglaciated land surfaces 

and helps in creating diverse set of training 

samples. Also, high resolution imagery 

was available for this area. Hence, it was a 

good site to test machine learning tool. 

There are more than 1 million wetland and 

lake basins in North Dakota, with densities 

of more than 10 wetlands per square mile 

in some areas (North Dakota Game and 

Fish Department, 2016). Lakes in North 

Dakota are particularly susceptible to non-

point source pollution, in part due to the 

great amount of agriculture in the state. 

Nearly all wetlands play a vital role in 

filtering clean water, storage of surface 

water, and crucial wildlife habitat. 

 

 
Figure 1. Peninsular land to the south of Sanish and 

New Town city of North Dakota. 

 

Data  

 

The map image used in this research is a 

Color Infrared (CIR) image (Figure 2), 

which features recent high-resolution 1-

meter aerial imagery of the study area. It is 

downloaded from ArcGIS online portal 

and is selected for classification because it 

is in 4 bands (Near Infrared, Red, Green 

and Blue bands) and gives a better 

indication of vegetation and presence of 

wetlands. CIR imagery is acquired at a 

one-meter Ground Sample Distance 

(GSD) with a horizontal accuracy that 

matches within six meters of photo-

identifiable ground control points, which 

are used during image inspection. It is also 

called a “False color” image as it is not 

visible in this color to the human eye as 

any NAIP imagery is visible. The CIR 

image used was for the year 2019.  
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Figure 2. CIR image of study area. 

 

Methods 

 

This project focused on classifying land 

cover using Machine Learning to identify 

wetlands. To accomplish this, a pixel-

based supervised classification approach 

was used. As per wetlands classification 

by National Wetland Inventory (NWI), the 

study area was divided into five different 

classes: wetland, open water body, 

farmland, service road/buildings, and 

vegetation. The training samples were 

distributed throughout the study area so 

that each class was represented in the 

training data. Fifty (50) samples were used 

for the study area per recommendations of 

protocol identified by GeoSpatial Services 

(2019). 

The three methods that were used 

for machine learning consisted of Random 

Trees Classifier, Maximum Likelihood 

Classifier and Support Vector Machine 

(Blaschke and Lang, 2006). The 

classification process and testing of 

classifier methods were conducted in 

ArcGIS Pro (10.4) software. The results of 

accuracy were calculated using accuracy 

assessment and calculating the kappa 

coefficient.  

 

Random Trees Classifier 

 

Random Trees is a collection of individual 

decision trees where each tree is generated 

from different samples and subsets of the 

training data. The idea behind calling these 

Decision Trees (DT) is that for every pixel 

that is classified, several decisions are 

made in rank order of importance. The 

decision trees are known to produce 

results of higher accuracies in comparison 

to traditional approaches such as the box 

and minimum distance to means 

classifiers, but the performance of decision 

trees can be affected by a number of 

factors including pruning and boosting 

methods used and decision thresholds 

(Mahesh and Mather, 2003).   

This method is called Random 

Trees because each dataset is classified a 

number of times based on a random sub 

selection of training pixels, thus resulting 

in many decision trees. To make a final 

decision, each tree has a vote. This process 

works to mitigate overfitting. Random 

Trees is a supervised machine-learning 

classifier based on constructing a 

multitude of decision trees, choosing 

random subsets of variables for each tree, 

and using the most frequent tree output as 

the overall classification. The following 

algorithm is used for this classifier 

method:  

∑ 𝑎(𝑖)𝑥(𝑖) ≤ 𝑐

𝑛

𝑖

 

for multivariate decision trees  

or simply x(i) > c for univariate decision 

trees. Where x(i) represents the 

measurement vectors on the n selected 

features and a is a vector of linear 

discriminate coefficients while c is the 

decision threshold (Brodley and Utgoff, 

1992). The DTs are known to produce 

results of higher accuracies in comparison 

to traditional approaches such as the “box” 

and “minimum distance to means” 

classifiers. 

 

Maximum Likelihood Classifier 

 

Maximum Likelihood Classification 
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(MLC) assumes that the statistics for each 

class in each band are normally distributed 

and calculates the probability that a given 

pixel belongs to a specific class. Each 

pixel is assigned to the class that has the 

highest probability (that is, the maximum 

likelihood). The tool considers both the 

means and covariance of the class 

signatures when assigning each cell to one 

of the classes represented in the signature 

file. When the default equal option for 

probability weighting is specified, each 

cell is assigned to the class to which it has 

the highest likelihood of being a member.  

The advantage of the MLC as a parametric 

classifier is that it takes into account the 

variance–covariance within the class 

distributions and for normally distributed 

data (Erdas, 1999). The following 

algorithm is used for this classifier 

method: 

 

D = ln(ac) – [0.5 ln (|covc |)] – [0.5 (X-Mc) 

T (covc - 1) (X - Mc)] 

 

Where weighted distance or likelihood D 

of unknown measurement vector X 

belonging to one of the known classes in 

the equation and Mc is maximum 

likelihood classifier based on the Bayesian 

equation. 
 

Support Vector Machine Classifier 

 

The support vector machines (SVMs) are a 

set of related learning algorithms used for 

classification and regression. Like the 

decision trees classifiers, the SVM are also 

non-parametric classifiers. In other words, 

it does not require data to fit normal 

distribution. The theory of the SVM was 

originally proposed by Vapnik and 

Chervonenkis (1971) and later discussed 

in detail by Vapnik (1999). The objective 

of a support vector classifier is to find a 

hyperplane in an N dimension (N - number 

of features) that distinctly classifies data 

points. Support vectors are data points that 

are closer to the hyperplane and influence 

the position and orientation of the 

hyperplane. 

The easiest way to train the SVM 

is by using the linearly separable classes 

algorithm: 

 

WXi + b >= +1 for all y = +1.  

WXi + b <= -1 for all y = -1.   

 

According to Osuna and Freud (1997) if 

the training data with k number of samples 

is represented as {Xi, Yi}, i = 1, ..., k 

where X = RN is an N-dimensional space 

and y = {-1, +1} is a class label then these 

classes are considered linearly separable if 

there exists a vector W perpendicular to 

the linear hyper-plane (which determines 

the direction of the discriminating plane) 

and a scalar b showing the offset of the 

discriminating hyper-plane from the 

origin. For the two classes, it means class 

1 represented as -1 and class 2 represented 

as +1, two hyper-planes can be used to 

discriminate the data points in the 

respective classes. 

       

Accuracy Assessment  

 

After the land cover classification was 

done and different classifier methods were 

tested, accuracy results were calculated. 

This was done with the help of a confusion 

matrix available in the ArcGIS Pro 

environment. Accuracy assessment was 

used to quantify how well the classified 

results represent the underlying raster data 

and evaluate the accuracy of each class to 

determine the overall quality of the image 

classification (Foody, 2002). 

To see the assessment results, 

equalized stratified random points were 

generated (Twenty for each class) using an 

Accuracy Assessment tool and two new 

fields (classified and ground truth) were 
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added in the attribute table. Depending on 

the class value assigned to each point, the 

ground truth values were changed looking 

at the location in the image. After this, the 

confusion matrix was run to evaluate the 

kappa coefficient. This process was 

repeated for all three classifier methods 

and hence overall accuracy results of the 

methods were compared.  

The confusion matrix indicates the 

classification results for each of the 

random points. The confusion matrix gave 

a kappa statistic which explained an 

overall accuracy for each of the classifier 

methods. Kappa coefficients range from 0 

to 1. It is considered a substantial 

agreement if the Kappa coefficient falls 

between 0.61 to 0.8, and almost perfect 

agreement if the Kappa coefficient falls 

between 0.81 to 0.99 (Landis and Koch, 

1977). In this study, substantial agreement 

was selected as the standard for accuracy 

of the classification method results as 

shown in Table 1. 

 
Table 1. Accuracy standard for kappa coefficient 

calculated for classifier methods.  

Kappa Coefficient Accuracy Standard   

<0 No Agreement 

0 - .20  Slight 

.21 - .40 Fair 

.41 - .60 Moderate 

.61 - .80 Substantial 

.81 - 1.0 Perfect 

 

The formula for the kappa 

coefficient (𝜅) is: 

 

𝑘 =  
𝑃𝑜 − 𝑃𝑒

1 − 𝑃𝑒
= 1 −

1 − 𝑃𝑜

1 − 𝑃𝑒
 

 

where Po is the relative observed 

agreement among raters (identical 

to accuracy), and Pe is the hypothetical 

probability of chance agreement, using the 

observed data to calculate the probabilities 

of each observer randomly seeing each 

category. If the raters are in complete 

agreement, then 𝑘 = 1. If there is no 

agreement among the raters other than 

what would be expected by chance (as 

given by Pe), 𝑘 = 0. 

 

Confusion Matrix Analysis 

 

This matrix explains errors of omission 

and commission and derives a kappa index 

of agreement and an overall accuracy 

between the classified map and the 

reference data (Geneletti and Gorte, 2003). 

In the matrix table components 

U_Accuracy stands for user's accuracy. It 

represents the fraction of pixels classified 

correctly per total classifications. It also 

shows false positives, where pixels are 

incorrectly classified as a known class 

when they should have been classified as 

something else. User's accuracy is also 

referred to as errors of commission, or 

type 1 error. The data to compute this error 

rate is read from the rows of the table. 

P_Accuracy stands for producer's accuracy 

and represents the fraction of pixels 

classified correctly per total ground truths. 

It also shows false negatives, where pixels 

of a known class are classified as 

something other than that class. Producer's 

accuracy is also referred to as errors of 

omission, or type 2 error. The data to 

compute this error rate is read in the 

columns of the table. Accuracy is 

represented from 0 - 1, with 1 being 100 

percent accurate.  

 

Results 

 

Confusion Matrix Results 

 

The accuracy result for the three classifier 

methods are shown in Table 2, Table 3, 

and Table 4. Comparison of results along 

with run time for each classifier method is 

https://en.wikipedia.org/wiki/Evaluation_of_binary_classifiers
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shown in Table 5. Figures 3, 4, and 5 show 

the classified raster images for the 

supervised machine learning methods. 

Following is the abbreviation used 

in confusion matrix for different classes:  

C_10 = Wetland 

C_20 = Open Water Body  

C_30 = Farmland 

C_40 = Service Road/Buildings 

C_50 = Vegetation 

Table 2. Confusion Matrix for Random Tree Classification. Data corresponding to class value here is used to 

calculate User Accuracy (U_Accuracy which is Fraction of pixels classified correctly per total classifications), 

Producer Accuracy (P_Accuracy, Fraction of pixels classified correctly per total ground truths) and Kappa 

coefficient (Kappa, Overall assessment of the accuracy of the classification). 

 
 
Table 3. Confusion Matrix for Maximum Likelihood Classification. Data corresponding to class value here is used 

to calculate User Accuracy (U_Accuracy which is Fraction of pixels classified correctly per total classifications), 

Producer Accuracy (P_Accuracy, Fraction of pixels classified correctly per total ground truths) and Kappa 

coefficient (Kappa, Overall assessment of the accuracy of the classification). 
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Table 4. Confusion Matrix for Support Vector Machine Classification. Data corresponding to class value here is 

used to calculate User Accuracy (U_Accuracy which is Fraction of pixels classified correctly per total 

classifications), Producer Accuracy (P_Accuracy, Fraction of pixels classified correctly per total ground truths) and 

Kappa coefficient (Kappa, Overall assessment of the accuracy of the classification). 

 
 

 

 
Figure 3. Classified Raster using Random Trees Classification.  

 

Total Area:  
335 sq. miles  
Wetland 

Area: 99 sq. 

miles  
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Figure 4. Classified Raster using Maximum likelihood Classification. 

 

 
Figure 5. Classified Raster using Support Vector Result. 

 
 

 

Total Area:  
335 sq. miles  
Wetland Area: 

44 sq. miles  
 

Total Area:  
335 sq. miles  
Wetland 

Area: 96 sq. 

miles  
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Table 5. Comparison of result for machine learning methods along with their respective run time. 

Machine Learning Methods 

Kappa 

Coefficient 

Study Area (per 

Sq. Mile) 

Run Time For each classifier 

(Hours) 

Random Trees Classifier 0.71 335 7 

Maximum Likelihood Classifier 0.56 335 6 

Support Vector Classifier 0.63 335 8 

Discussion 

 

This study was conducted for land cover 

classification, so the study area was 

divided into five different categories and 

pixel-based supervised classifier methods 

were run to identify wetlands using 

machine learning tools. Each classifier 

method ran its own algorithm and gave an 

output by classifying land cover based on 

the training samples provided. The results 

were interesting and the difference in land 

cover classification was visible in each 

output. Random Trees classifier (Figure 3) 

presented the output by averaging multiple 

deep decision trees, trained on different 

parts of the same training set, with the goal 

of reducing the variance. In this case, most 

of the wetlands were correctly identified, 

and the kappa coefficient was (0.71) which 

was significant as explained in (Table 1). 

Even other classes were mostly identified 

at the correct locations with very few 

errors. Maximum Likelihood Classifier 

(Figure 4) presents the output by assigning 

each pixel to a class that has the highest 

probability, that is, the maximum 

likelihood of belonging to that category. In 

this case the kappa coefficient was (0.56) 

which was not significant as explained in 

(Table 1) and most of the land categories 

were misidentified by the tool. It means 

wetlands and other class categories were 

not correctly identified. The results also 

show that class categories and ground 

truth did not match each other at many  

locations. Support Vector classifier 

(Figure 5) presents the output by 

performing the classification by finding 

the hyper-plane that differentiates all the 

classes very well. In this case the kappa 

coefficient was (0.63) which was also 

significant  as shown in (Table 1) and it 

could be said that some wetlands were 

correctly identified but other land 

categories were misidentified at some 

places like some of the farmland area was 

confused with wetland area and vegetation 

was also identified at some wrong areas. 

The results were such because it was 

possible that supervised training method 

would have misidentified pixels while 

classifying the classes which was a 

disadvantage of using pixel-based 

classification.  

  Hence, amongst the three classifier 

methods it could be said that results for 

Random Trees was acceptable as it had the 

highest kappa coefficient amongst the 

three classifier methods (Table 5). Also, it 

correctly identified maximum wetland 

area amongst the three classifier methods 

(Figure 3). The results were also compared 

against the manual classification process 

of identifying wetlands (Figure 6). The 

same study area could take approximate 

ninety (90) hours to digitize manually and 

identify wetlands (Table 6) in comparison 

to machine learning process which took 

twenty-one (21) hours in total to identify 

wetlands. 

Few limitations were experienced 

in this research. For example, samples 

decided for training were at editor's 

discretion. It is possible representative 

samples were not chosen and may be some 
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wetland samples were left out. 

 

 
Figure 6. Manual Classification process. 

 
Table 6. Results for manual vs machine learning in 

terms of time taken to identify wetlands. 

Classification Method 

Approximate time 

taken (in hours) 

Random Trees 

Classifier 7 

Maximum Likelihood 

Classifier 6 

Support Vector 

Classifier 8 

Manual (Refer to 

Figure 6) 90 

 

Second, to calculate accuracy, 

random points were generated on the 

entire study area. It was difficult to say 

that the random points generated by the 

tool were the most representative to 

calculate accuracy. In addition, if points 

were manually selected then the results 

could have varied significantly. Lastly, 

another limitation was not to be able to use 

unsupervised methods of machine learning 

along with pixel-based supervised 

methods. It is because unsupervised 

methods classified the image in many 

categories, but it was difficult to associate 

the resulting classes with Land Cover 

categories. Hence, the results for 

identifying wetlands could not be 

established for supervised vs. 

unsupervised method. 

 

 

Conclusions 

 

This project analyzed land cover 

classification to identify wetlands using 

machine learning. The study area was 

divided into five different classes: 

wetland, open body, farmland, service 

road/buildings, and vegetation. By using 

pixel-based supervised classification, 

wetlands were identified. Results of the 

three classifier methods used were 

compared as their accuracy was calculated 

using a confusion matrix and the kappa 

coefficient. Random Trees and Support 

Vector Machine gave substantial levels of 

accuracy followed by the maximum 

likelihood classifier method where the 

level of accuracy was not substantial. This 

study may be helpful to organizations 

working on wetlands conservation as 

machine learning reduces time and effort 

otherwise would be needed to manually 

digitize wetlands (Table 6). It can also be 

useful to decision makers and government 

organizations who want to design quick 

solutions for wetland preservation.  
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