
A GIS Enabled Air Dispersion Modeling Tool for Emergency Management

Stephen D. Jakala
Department of Resource Analysis, Saint Mary’s University of Minnesota, Minneapolis,
MN, 55404

Keywords: GIS, Air Dispersion Modeling, Atmospheric Dispersion Modeling, Chemical
Plume Analysis

Abstract

This paper documents the importance of GIS enabled air dispersion modeling for use in
Emergency Management operations and outlines the steps taken to design and build a
GIS enabled air dispersion modeling tool for ESRI’s ArcGIS software. The tool contains
report generating functionality that has the ability to analyze the area affected by the
plume and create a summary report on the people and resources that are in harms way.
The paper also provides a sample case study on the analysis of an accidental chemical
release scenario.

Introduction

Air dispersion models are computer
tools that use mathematical equations to
simulate how air pollutants disperse in
the atmosphere. Air dispersion models
are used to estimate or to predict the
downwind concentration of chemical air
pollutants from sources such as
industrial plants, vehicular traffic,
chemical storage facilities, and
accidental chemical spills.
 Air dispersion modeling has
evolved greatly since the initial model
development in the early twentieth
century. At that time, air emissions from
industrial and mobile sources were
substantially unregulated and the
dispersion process was not well
understood (Westbrook, 1999). By the
1950’s, scientists were examining the
dispersion process to predict atomic
bomb fall out. In the 1960’s and 1970’s,
two pioneering scientists, F. Pasquill and
F.A. Gifford, developed basic dispersion

curves that could be employed in
modeling. Another scientist, G.A. Briggs
developed equations to describe
emissions plume behavior known as “the
Briggs Equations” which were widely
used and helped advance scientific
research in the area of air dispersion
modeling. In the past, computer
resources were limited and dispersion
modeling calculations were often
completed manually or by using
relatively crude computer code
(Westbrook, 1999).

Improvements in technology
have greatly increased the speed and
accuracy of today’s air dispersion
models and they have found use in many
different areas from ensuring regulatory
compliance under the Clean Air Act to
assessing human exposure to natural,
accidental, and intentional chemical
releases. It is the latter of the two
examples that has made air dispersion
modeling such an important tool for
emergency managers everywhere.

Jakala, Stephen D, 2007. A GIS Enabled Air Dispersion Modeling Tool for Emergency Management.
Volume 9, Papers in Resource Analysis. 20pp. Saint Mary’s University of Minnesota Central Services
Press. Winona, MN. Retrieved (date) from http:/www.gis.smumn.edu

Emergency management
responsibilities are centered on
assessing, analyzing, managing, and
protecting the public through emergency
planning and coordination of emergency
services operations in major emergencies
and disasters such as chemical release
scenarios (Bacon, 2000). Recently,
emergency managers have realized the
benefit of leveraging air dispersion
modeling with the modeling ability,
analysis, and display functionalities of
Geographic Information Systems (GIS).
Because of the intrinsic spatial
components of air dispersion modeling,
it was inevitable that these two
technologies would be used in
conjunction with each other to give an
overall situational awareness previously
unattainable in either standalone system.
In fact, combining these two software
platforms into an easy to use interface
was the inspiration for the tool and
analysis created in the course of this
research project.

Using GIS enabled air dispersion
modeling, emergency managers are able
to display a chemical plume footprint,
which represents an overhead view of
the chemical plume and is typically
symbolized by a polygon or group of
polygons representing different exposure
rates at different areas within the plume,
on top of other relevant GIS data. Types
of analysis that can be performed using
this methodology include demographic,
transportation, and critical infrastructure
analysis. This data can be used to
generate information such as how many
people are affected by the chemical
release or which roads need to be closed
to isolate the affected area or which
businesses need to be notified about the
situation.

GIS enabled air dispersion
modeling provides chemical release

information in a convenient and easily
understandable fashion, which can be
quickly distributed to necessary parties
involved in critical emergency service
operations (Hunt, 2005).

The purpose of this paper was to
research and document the benefits of
GIS enabled air dispersion modeling
tools for emergency managers,
document the steps taken to create a GIS
enabled air dispersion modeling tool for
the Scott County, Minnesota Emergency
Management Department, and to use the
tool to analyze a hypothetical chemical
release situation and its impact on
county peoples, transportation, and other
critical infrastructure elements.

Background

There are many different types of
potential chemical release scenarios that
can occur, and emissions can originate
from various source types that have
different levels of urgency but these can
all be broken down to three major
modeling activities. These three major
modeling activities are (1) contingency
modeling, (2) short term site assessment
modeling, and (3) natural, accidental, or
intentional release modeling (Turpin,
2004).

Contingency modeling is a
planning activity that is used to provide
possible downwind concentrations for
specific chemicals and emission rates,
which may be encountered at a potential
chemical release site. An example of this
type of modeling would be to model the
most likely outcome of a chemical
release using an average of historical
weather data for the study area. This
type of modeling is commonly used for
training scenarios and for developing
emergency response plans.

 2

 Short-term site assessment
modeling is used to calculate chemical
concentrations, which have occurred
over periods of a year or less. This type
of model is most often used for risk
assessments after a release has occurred.
An example of this is type of modeling
would be to model a release that
occurred two weeks prior to determine
the area that was affected by the plume
to be able to choose the best locations
for soil sampling.
 The last type of modeling and
probably the most critical to emergency
managers is natural, accidental, or
intentional release modeling.
Regardless of the motive, this type of
release modeling is performed soon after
a chemical release occurs or is
discovered and is intended to provide
immediate results. These types of
models perform the best when real-time
data is available to be able to model
current ground conditions. These models
provide worst-case scenario results and
supply data for emergency managers to
take immediate action. An example of
this type of modeling scenario would be
if a chemical storage tank ruptured and a
large amount of toxic chemical was
released in to the atmosphere. The data
from the accidental release model could
be used to notify or evacuate people in
the affected area (Turpin, 2004). This is
also the modeling scenario that was used
for a case study in the course of this
research paper.
 Due to the diverse factors that
can affect plume behavior, many
different air dispersion models have
been devised over the years. Special
models exist to address plume
movement in valleys, around mountains,
over water, and near shorelines. Other
models address short-term impacts for
chemicals in different physical states.

These models are used to complete
dispersion modeling for accidental
chemical spills. Separate models that
calculate chemical concentrations due to
sources emitting into the lee side of
structures also exist (Westbrook, 1999).

The air dispersion model that
was chosen for this project is one of the
more common air dispersion models
used in emergency management. It is a
free software tool created by the United
States Environmental Protection Agency
(EPA) called the ALOHA air model
(Areal Locations of Hazardous
Atmospheres). ALOHA contains a
database of approximately 1,000
common chemicals and it can predict the
atmospheric dispersion rate and direction
of chemical releases from broken pipes,
ruptured tanks, puddles or direct
chemical sources (Tomaszewski, 2003).
The model estimates pollutant
concentrations downwind from the
source of a spill, taking into
consideration the toxological and
physical characteristics of the spilled
material. ALOHA uses two separate
dispersion models, a Gaussian model
and a heavy gas model. The Gaussian
model describes movement and spread
of a neutrally buoyant gas, which is
approximately the same density as air.
The heavy gas dispersion calculations
are derived from the Dense Gas
Dispersion Model (DEGADIS) model,
which was developed in part by the U.S.
EPA (Chakraborty and Armstrong,
1994).

The main reason the ALOHA
model was selected for this project is
because it is one of the most widely
accepted models available and its open
architecture allows integration with other
platforms such as ESRI’s ArcGIS
technology. The EPA even offers a suite
of free import tools that enable

 3

importation of ALOHA plume footprints
directly into ESRI’s ArcMap GIS
software (Chakraborty and Armstrong,
1994). Once the plume footprint is
imported into the GIS software all of the
analysis capability of the GIS software is
available to perform on the plume. The
information that is obtained from this
analysis is important for emergency
managers, but because of the general
lack of GIS training for emergency
management personnel, this level of
implementation is hard to realize,
especially in time critical situations.
Thus, some GIS departments have
created custom applications that
automate this process.

There is also a small market of
third party vendors that have created GIS
software extensions and standalone
software that automate the process of
importing plumes from various air
dispersion models. Many of these
applications provide the added benefit of
integrating real-time weather data into
the models equations and also conduct
statistical analysis on the area affected
by the plume and report this information
in easy to understand printable reports.

Methods

Tool Creation

The ALOHA air dispersion model was
selected as the preferred modeling tool
to use for this project because of its open
architecture and easy integration with
ESRI’s ArcGIS software. The ALOHA
software is a standalone application that
allows a user to enter specific variables
for a chemical release scenario, the tool
then models how the toxic gas cloud will
disperse throughout the atmosphere.

The GIS enabled air dispersion
modeling tool’s requirements are as

follows. First, the tool needs to be able
to be integrated with ESRI’s ArcGIS
software. This means that the user needs
to be able to click a point on a map
within ArcMap to define the location of
the release point. The tool needs to be
able to determine the real-time weather
conditions, such as wind speed and
direction, at the point of origin. This
information will also be needed later as
an input for ALOHA’s calculations.
After the user defines the point of origin
in the map, the user then needs to define
ALOHA’s required variables such as
chemical type and chemical source. This
information along with the real-time
weather data is transferred to the
ALOHA program for analysis. After the
analysis is complete the result is a plume
footprint file which can be displayed in
ALOHA’s primitive map interface. This
plume footprint then needs to be
converted into an ESRI shapefile data
format and imported into ArcGIS.

Once the data is imported into
the GIS software, analysis can be
conducted. The tool then needs to
perform overlay analysis to select data
from the base map information such as
points of critical infrastructure,
population and demographic data, and
anything else deemed useful. This data
needs to be presented in an easy to create
summary document, which can be easily
distributed during a chemical release
event.

 This tool will streamline the
process of analyzing an ALOHA plume
footprint in ArcGIS. The reporting
feature will allow Emergency Managers
to share information with others in a fast
and convenient fashion.

Converting ALOHA’s .PAS file into a
Shapefile

 4

The first and most important part of
creating this tool was determining how
to convert the plume footprint file
created by ALOHA into a shapefile.
Figure 1 displays an example of a typical
ALOHA footprint. As shown in Figure
1, the legend has different values that
represent chemical concentration at
different areas of the plume. The area
immediately adjacent and down wind
from the point of release has the highest
chemical concentration.

Figure 1. Typical ALOHA footprint as displayed
in ALOHA.

The footprint file is always saved as
ALO_FTP.PAS in the ALOHA file
directory. This file is a temporary file
that is created only after ALOHA has
performed its analysis and while the
ALOHA program is open. As soon as
the program is closed, the
ALO_FTP.PAS file is deleted.
 The .PAS file is a text file that
defines the attributes and X, Y locations
of each of the vertices that make up the
polygons of a plume footprint (Figure 2).
Each line in the .PAS file is preceded by
a character that defines the type of data
that will follow. The two main types of
data that are represented in the .PAS file
are X, Y locations and attribute data. For
example, the character “L” would
precede an X, Y location, and the word

“FOOTPRINT” would precede attribute
information for a specific polygon.
 In order to create a shapefile
from the data contained in the .PAS file,
the first step was to parse the data to
extract the critical elements. The tool
reads the .PAS file line by line and looks
for the all the lines that start with an “M”
which are the starting and ending points
of polygons, or an “L” which are the
other vertices that make up a polygon.
The tool also evaluates other indications
in the data that designate where the
attribute information is located. Figure 3
presents the code for this extraction.

As illustrated in Figure 3, the X,
Y data in the .PAS file has values such
as 0.5, -4.1. It is easy to see that the
plume is not going to be placed in the
correct location because the user-defined
point of origin has not been taken into
consideration. In order to ensure that the
plume plots in the correct location, the

 Figure 2. Contents of a typical .PAS file.

application needs to add the X, Y
location of the user-defined point of
origin to each X, Y value. This
information is collected when the user
clicks on the map after selecting the tool
button. For example, after the user-
defined point of origin was added to
each X, Y value in the .PAS file, the X,

 5

FF = FreeFile
Open "C:\ALOHA\ALO_FTP.PAS" For Input As #FF ‘** Opens up the .PAS file for use as the FreeFile feed

Dim fs As Object
Set fs = CreateObject("Scripting.FileSystemObject")
Set a = fs.CreateTextFile("C:\ALOHA\Test.txt", True)
a.WriteLine ("MyID, X, Y, Value") ‘** Creates a new text file called Test.txt and adds MyID, X, Y, Value to the
 “** first line. These will be the field headings in the new table.
Dim i As Integer
i = 0

Dim f As String
Dim d As String
Dim g As String

Do While Not EOF(FF) “** Do while its not the end of the file

 Line Input #FF, LineFromFile

 f = Split(LineFromFile, " ")(0)

 6

 If f = "FOOTPRINT" Then “** Parse the .PAS file to look for the word FOOTPRINT. This is the Value.
 d = Split(LineFromFile, ":")(1)
 g = Split(d, "]")(0)
 End If

 If Mid(LineFromFile, 1, 2) = "M " Then “** Parse the .PAS file to look for lines in the .PAS file that start with M.
 ‘** An M indicates the start of a polygon.

 i = i + 1 ‘**Becomes the MyID value. All vertices of a polygon have the same ID.
 ‘** This value changes once the code loops through to a new letter M.

 Dim pXY As String
 pXY = Mid(LineFromFile, 2)

pXY = Trim(pXY) ‘** Splits the concatenated X and Y values out of the string but are still
‘** separated by a space.

 Dim pXY1 As String
 pXY1 = Split(pXY, " ")(0) ‘** Gets the X value from the variable pXY

 Dim pXY2 As String
 pXY2 = Split(pXY, " ")(1) ‘** Gets the Y value from the variable pXY

 a.WriteLine (i & ", " & pXY1 + pX & ", " _

& pXY2 + pY & "," & g) ‘** Writes the MyID, X, Y, and Value data to the .txt. Also adds the lat/long
‘**from the users map click.

 End If

 If Mid(LineFromFile, 1, 2) = "L " Then ‘**Parse the .PAS file to look for lines in the .PAS file that start with L. An L
 ‘** indicates a vertex in a polygon.

 'Dim pXY As String ‘** Splits the concatenated X and Y values out of the string but are still
 pXY = Mid(LineFromFile, 2) ‘** separated by a space.

 pXY = Trim(pXY)

 'Dim pXY1 As String
 pXY1 = Split(pXY, " ")(0) ‘** Gets the X value from the variable pXY

 'Dim pXY2 As String
 pXY2 = Split(pXY, " ")(1) ‘** Gets the Y value from the variable pXY

 a.WriteLine (i & ", " & pXY1 + pX & ", " _

& pXY2 + pY & "," & g) ‘** Writes the MyID, X, Y, and Value data to the .txt. The actual lat/long taken
End If ‘**from the map coordinates are added to the X, Y values in this step (pX and

 ‘**pY). This allows the plume to display in the location that the user clicked in
“**the map.

Loop

Figure 3. Code sample showing how the application parses the .PAS file to pull out an ID, X, Y, and Value
and writes it to a text file which can then be used to build a table.

Y data would have values such as
462432.5, -4953664.1. Because the same
numbers are added to each X, Y
location, the shape of each polygon will
be maintained thus ensuring that the
polygon that is created appears in the
correct location.
 The goal of parsing the data is to
create a new text file that contains the
data needed to build a shapefile. It is
important to determine where a polygon
starts and stops in order to create a
shapefile that has complete polygons and
correct attributes along with the correct
set of X, Y locations. Luckily, the .PAS
file signifies when a polygon starts and
stops by preceding the data with the
character “M.” Figure 4 provides an
example of a parsed .PAS file. It is a
coma delimited text file with a feature
ID, an X field, a Y field, and an attribute
value field.

Figure 4. Text file created from a parsed .PAS
file.

The next step is to use ArcObjects code
to create an empty polygon shapefile and
add it to the ArcGIS project. Next a table
is built from the text file that was created
in the previous process (Figure 4). The
application loops through the table
adding each X, Y point to the empty
polygon. After all of the points are
added, ArcObjects code is used to select

all of the points of each feature and
create polygons from the X, Y points. A
detailed description of the code used in
this process is provided in Figure 6.

The end result of this process is a
shapefile with the appropriate attributes
corresponding to the correct polygons
(Figure 5). The last step involved in
converting the .PAS file to a shapefile is
adding the correct symbology. Using
ArcObjects, a UniqueValueRenderer
was set up to symbolize the footprint file
similarly to how the footprint appeared
in the ALOHA software including a
transparency. The next task was to figure
out how to get the real-time weather data
and other attributes into ALOHA.

Figure 5. Attribute table of footprint.

Real-Time Weather Data

One of the most important features of air
dispersion modeling software for
modeling accidental releases is the
ability to obtain and use real-time
weather data. This is an important
feature to add to the project because it
streamlines the modeling process and
adds reliability to the results. For this
project, there were two main options for
obtaining real-time weather data. The
first option was to use NOAA’s
(National Oceanic and Atmospheric
Administration’s) National Weather
Service XML (Extensible Markup
Language) Feeds of Current

 7

 Call CreateShapefile("C:\ALOHA", "footprint") ‘** Calls a function that creates a shapefile with the correct format.

 Call AddaShapefile("C:\ALOHA", "footprint", 0) ‘** Calls a function that adds the empty shapefile to the map so it

‘** can be built.
 Dim pMxDoc As IMxDocument
 Set pMxDoc = ThisDocument

 Dim pfLayer As IFeatureLayer
 Set pfLayer = pMxDoc.FocusMap.Layer(0) ‘** Sets the focus to the new shapefile. It’s the first one in the TOC.

 Dim pTable As ITable
 Set pTable = CreateTableFromText("C:\ALOHA", "Test.txt") ‘** Calls a function that builds a table from the text file that was
 If pTable Is Nothing Then ‘** previously created.
 Exit Sub
 End If

 Dim pCursor As ICursor, pCursor2 As ICursor
 Set pCursor = pTable.Search(Nothing, True) ‘** Creates a cursor that will loop through the new table.

 Dim pDataStats As IDataStatistics
 Set pDataStats = New DataStatistics

 8

 Set pDataStats.Cursor = pCursor
 pDataStats.Field = "MyID" 'this is the unique id for each polygon ‘** Sets the unique value of the table to the MyID field
 Dim theValues As IEnumVariantSimple
 Set theValues = pDataStats.UniqueValues

 Dim theID As Variant, pFilter As IQueryFilter, pRow As IRow, _ ‘** Sets up the new polygon and the tools needed to populate it.
 pPolygon As IPointCollection
 Dim pPoint As IPoint, pFeature As IFeature
 Set pFilter = New QueryFilter
 Dim theDamage As String
 Dim pRecNum As String

 theValues.Reset ‘** Sets the enumerator to the top of the table.
 theID = theValues.Next ‘** Gets the first MyID value in the table.
 Do While theID <> ""
 pRecNum = theID
 Set pPolygon = New Polygon ‘** Creates a new polygon.
 pFilter.WhereClause = "MyID = " & theID ‘** Selects all the MyID’s with value 1 (then loops).
 Set pCursor2 = pTable.Search(pFilter, True)
 Set pRow = pCursor2.NextRow
 theDamage = pRow.Value(pRow.Fields.FindField("Value")) ‘** Gets the Value attribute of the polygon.

 Do While Not pRow Is Nothing
 Set pPoint = New Point
 pPoint.PutCoords pRow.Value(pRow.Fields.FindField("X")), _ ‘** Gets the X and Y attributes from the table for the record and
 pRow.Value(pRow.Fields.FindField("Y")) ‘** creates a point. This process is repeated for each MyID value.
 pPolygon.AddPoint pPoint

 Loop

 Set pRow = pCursor2.NextRow

 If pPolygon.PointCount >= 4 Then ‘** If a set of points has more then 4 points in it, then create a
 ‘** polygon from the points and assign it a ID and Value.
 Set pFeature = pfLayer.FeatureClass.CreateFeature
 Set pFeature.Shape = pPolygon
 pFeature.Value(pFeature.Fields.FindField("ID")) = theID
 pFeature.Value(pFeature.Fields.FindField("Value")) = theDamage
 pFeature.Store
 End If

 theID = theValues.Next
 Loop ‘** Loop through and create another polygon. After all of the
 ‘** polygons are created, they are merged and symbolized.

Figure 6. This code sample shows how the application creates a table from the text file that was created in
Code Sample 1 and builds a shapefile from it.

Weather Conditions. This option had a
few shortfalls though. It was only
updated hourly and the closest
observation point to the study area of
Scott County, MN was the
Minneapolis/St. Paul International
Airport. The other option was to use
WeatherBug Lab’s WeatherBug
Application Developers Interface, which
allows access to a queriable XML or
RSS (Really Simple Syndication) stream
that returns real-time weather conditions
for any zip code in the United States.
WeatherBug has access to over 8,000
remote weather stations throughout the
United States and its database is updated
every two seconds. WeatherBug has two
weather stations within Scott County and
many close by. As a result, the proximity
of weather bug stations to the study area
was the primary reason this option was
selected to use.
 In order to obtain the zip code for
the point of origin, the application had to
provide some search functionality to the
user based on the user clicking the map.
The first step in accomplishing this task
was to add a zip code shapefile layer to
the base map in the ArcGIS project.
After selecting the GIS enabled air
dispersion modeling tool button and
clicking on the map, ArcObjects is used
to perform a query on the zip code layer
to return the zip code that was clicked.
This variable can then be entered into an
XML stream request that will be read by
an XML stream reader implemented
with Visual Basic. The XML stream is
parsed much like the .PAS file to extract
the needed information. This process
includes extracting the wind speed, wind
direction, temperature, humidity, the
name of the location the conditions are
coming from, and an image, which is a
visual representation of the weather
conditions. Figure 8 details how the

XML stream reader processes this
information and extracts the needed data.
 This information is entered into
ALOHA along with the other parameters
needed for analysis. Before this can be
conducted, it is first displayed to the user
on a form that appears after the user
clicks the map to define the point of
origin. The user form shown in Figure 7
shows the weather data obtained for the
zip code that was defined by the user.
The form also displays other options that
are available for the user to select to
define parameters for the model such as
the chemical to model, ground
roughness, cloud cover, inversion
information, and chemical source type.
There are additional user forms for each
chemical source that can be modeled.
These additional forms appear when
selected.

Figure 7. The plume model form displaying the
weather data.

Passing Variables to ALOHA

After entering the required parameters
on the ALOHA Plume Model form, the
user can press the Start ALOHA button.
This button passes all of the variables
defined in the Plume Model form along
with attributes defined on any of the
source forms to ALOHA and runs the
model.

 9

 Dim sXMLFile As String ‘** This sets up the different variables needed for this operation.
 Dim oXml As Object
 Dim oError As Object
 Dim oDocNode As Object
 Dim oCommand As Object
 Dim oCommandNode As Object
 Dim oSub As Object ‘** sXMLFile is the web address to the Weatherbug XML feed.
 Dim oParam As Object ‘** The variable pZipCode is populated by a spatial query
 Dim oNode As Object ‘** on the Zip Code layer in the map.

 sXMLFile = "http://a4780801886.api.wxbug.net/getLiveWeatherRSS.aspx?ACode=A4780801886&zipCode=" & pZipCode

 Set oXml = CreateObject("MSXML2.DOMDocument") ‘** Creates an XML stream reader.
 oXml.async = False

 oXml.Load sXMLFile ‘** Loads the Weatherbug XML feed to the XML stream reader.
 Set oError = oXml.parseError
 ' Check if there was any error open/parsing the XML file
 If oError.ErrorCode <> 0 Then
 MsgBox "Error parsing " & sXMLFile & vbCrLf & _
 "Error: " & oError.reason

 10

 Exit Sub
 Else
 End If

 Set oDocNode = oXml.documentElement
 Dim fs As Object
 Set fs = CreateObject("Scripting.FileSystemObject") ‘** Creates text file from the XML Stream.
 Set a = fs.CreateTextFile("C:\ALOHA\RSS2.txt", True) ‘** Used mostly for error checking.
 a.WriteLine (oXml.xml)

 Dim pURL As String
 pTempString = oDocNode.SelectNodes("//item/description").Item(0).Text ‘** Temp string to hold XML so it can be parsed.

 pLocation = Split(oXml.xml, "<title>Compact Live ")(1)
 pLocation = Split(pLocation, " - USA")(0) ‘** Parses XML at common break point to extract the location.

 pTemp = Split(pTempString, "Temperature: ")(1)
 pTemp = Split(pTemp, "&")(0) ‘**Parses XML at common break point to extract temperature.

 pWindSpeed = Split(pTempString, "Wind Speed: ")(1)
 pWindSpeed = Split(pWindSpeed, " mph")(0) ‘**Parses XML at common break point to extract wind speed.

 pWindDir = Split(pTempString, "mph ")(1)
 pWindDir = Split(pWindDir, "&")(0) ‘**Parses XML at common break point to extract wind direction.

 pHumidity = Split(pTempString, "Humidity: ")(1)
 pHumidity = Split(pHumidity, " ")(0) ‘**Parses XML at common break point to extract humidity.

 pURL = Split(pTempString, "http")(1)
 pURL = Split(pURL, ".gif")(0) ‘**Parses XML at common break point to extract image URL.

 Me.lblLocation = "Live " & pLocation ‘** Assigns labels in the form to their appropriate variables.
 Me.lblTemp = pTemp & " °F"
 Me.lblSpeed2 = pWindSpeed & " mph"
 Me.lblDirection = pWindDir
 Me.lblHumidity = pHumidity & "%"

 'Me.Image1.Picture = LoadURLPicture("http" & pURL & ".gif") ‘** Loads the image into the picture box on the form.

 Set oXml = Nothing ‘** Clears all of the variables of the stream reader.

 Set oDocNode = Nothing
 Set oCommand = Nothing
 Set oCommandNode = Nothing
 Set oError = Nothing

Figure 8. This code sample shows how the application downloads the real-time weather feed from an XML
stream and parses out the useful information.

 ALOHA was built to be able to
handle this type of automation and
includes a DLL that is supposed to allow
inter-application communication. This
functionality was not successfully
utilized for this project due to lack of
documentation on the subject. However,
a workaround was identified and
implemented.
 ALOHA is fully navigable using
keyboard shortcuts, tabs, and arrows.
This means that even though the tool
cannot communicate with ALOHA
through inter-application
communication, it can navigate the user
forms and populate the variables in
ALOHA automatically by sending the
appropriate keystrokes to the program.

After pressing the Start ALOHA
button, the ALOHA application starts
and the focus is set using a Shell
command. Then, through a series of “if
then” statements, the tool sends the
ALOHA application the appropriate
keystrokes using the Visual Basic
SendKeys statement. A small portion of
the code used to perform these tasks is
provided in Figure 9. This process takes
a few seconds as it goes through the
appropriate dialogs entering the weather
data, chemical information, and
chemical source data until it stops at the
plume generation portion of the
application. This is as far as the
automation process goes; it leaves the
user the option of modeling several
different types of hazards, a toxic area of
vapor cloud, a flammable area of vapor
cloud, or a blast area of vapor explosion.

At this point in the application,
the user chooses the type of hazard they
would like to model and presses OK.
The user switches the focus back to the
ArcMap project to import the footprint
and perform the analysis. It is at this
point the previously discussed process of

converting the .PAS footprint file to a
shapefile, which has been automated, is
executed by pressing the Plot Footprint
button on the user form.

Obtain Basemap Data

In order to conduct the overlay analysis
to determine which features are affected
by the plume footprint, an underlying
basemap needs to be added to the map.
The data layers that were obtained for
this project besides the zip code layer
that was mentioned previously are as
follows: parcel polygons, critical
infrastructure points, census block
polygons, and roads. This data was
chosen because its components make up
a solid basemap, which can support the
analysis required for this project.
 All data was obtained from the
Scott County GIS department except the
census block polygons, which were
obtained from ESRI’s ArcData data
download site - http://arcdata.esri.com
/data/tiger2000/tiger_download.cfm.

Plume Footprint Analysis and Summary
Report

One of the major benefits of this tool is
its ability to quickly and easily create a
customized summary report. The tool
has the ability to select the features that
are affected by, or fall within, the plume
path. A report can then be created that
enters the information about the selected
features into a nicely formatted report.
ArcGIS has two basic options for
creating reports, the default ArcMap
report wizard and Crystal Reports.
Crystal Reports was chosen for this tool
because of its superior functionality. A
report template was created in Crystal
Reports, which could be reused with

 11

new data anytime the tool is run. The
report consists of five sections.

 (1) A population information
section with population data for the
census blocks that intersect with the
plume footprint.

(2) A parcel information section
with data on the parcel count and
acreage total for parcels that intersect
with the plume.

(3) A road section with the
number of road segments that are within
the plume footprint.

(4) A housing information
section with data on the number of
households, families, household units,
vacant units, owned units, and rented
units.

(5) Critical infrastructure section
with the names, addresses, and a brief
description of critical infrastructure
points that are with in the plume
footprint.
 The data for all of these sections
are mapped to the tables created in the

 ‘**********************************This is a small excerpt of the code ***********************************

Shell "C:\ALOHA\ALOHA.EXE", vbNormalFocus ‘** This Shell function opens ALOHA and sets the focus.

Call Wait(5) ‘** Calls the Wait function which pauses the code for 5 seconds.

‘** This is used a lot in this part of the project to ensure commands
 ‘** issued at the correct time. In this case it waits for ALOHA to open.

SendKeys "~" ‘** SendKeys sends shortcut keys to ALOHA. This sends the ENTER key.

'Set Atmosphere Data
SendKeys "^A" ‘** Opens the Atmospheric Data dialog.

If pWindSpeed <= 2 Then ‘** Checks to see if the windspeed is > then 2 (ALOHA requirement).
 SendKeys "2" ‘** If <= 2, then send a value of 2.
Else
 SendKeys pWindSpeed ‘** If >= 2, then send the windspeed value.
End If

SendKeys "{TAB}" ‘** Send the TAB key. The next 3 keys navigate to the next area of the form.

SendKeys "{RIGHT}" ‘** Send the RIGHT arrow.

SendKeys "{TAB}" ‘** Send the TAB key.

SendKeys "{TAB}" ‘** Send the TAB key.

SendKeys pWindDir ‘** Enter the wind direction into the proper area on the form.

Figure 9. This code sample illustrates how the application sends data to ALOHA using the SendKeys
function of Visual Basic.

feature selection process, which will be
described in the next section. This data is
updated whenever the tool is run and the
new data is reflected in the report.
 After the feature selections are
performed and the data tables are
created, a Crystal Reports report viewer
is launched which contains the report
template created in the previous step.
After pressing the refresh button on the
report viewer, the updated data populates
the report and the plume hazard
summary is ready to print or save as a
pdf.

Plume Analysis

After the plume is imported into the map
(Figure 10), the user can start the
analysis by pressing the Report button
on the user form shown in Figure 7. As
outlined in Figures 13 and 14, several
processes must occur before the data is
ready to be added to the report. On line
1, the first action that takes place is to

 12

zoom to the extent of the new plume
layer. This is necessary to create an
image of the map so it can be placed in
the final report. Line 2 calls a function to
export the data view to a JPEG and saves
it in a specified directory that can be
accessed by the report template. The
third action that takes place is the action
most important to the analysis portion of
this project. Line 3 of Figure 13 calls a
function called SelectbyPlume, which
performs an overlay analysis on the
layers affected by the plume. This
function selects the data layers and
exports their selected records to dbf
tables that are consumed by the report
template. The major processes in the
SelectbyPlume function are outlined in
the second half of Figure 13 and Figure
14.

The first step in the
SelectbyPlume function is to
programmatically set the footprint layer
as the only selectable layer in the map.
The program then selects the footprint
layer in lines 23 and 24 so it can be
made into a graphic. The select by
graphic method was chosen over the
select by feature method because of its
ease of implementation. A graphic
element is then built from each of the
selected features in the footprint layer in
the “ Do While Loop” located at lines 34
– 48.

After a graphic is created for
each part of the feature, the application
needs to select the features of the
parcels, census blocks, points of critical
infrastructure, and roads that intersect
with the plume footprint graphic. The
next step in this process is to set the
previously mentioned layers as the only
selectable layers in the map. This is
executed in lines 49 – 54 of Figure 14.
The next step is to select all of the
selectable layers that intersect the

footprint graphic. In order to streamline
the code, the application uses the built in
ArcMap command
Query_SelectByGraphics, which will
select all of the selectable layers by the
graphics in the graphics container. Once
the selection has taken place, another
function named ExportDBF is called on
each of the four layers needed for the
report. This function takes the selected
features of each layer and builds a dbf
table from them. The next step is to clear
the selected features using an ArcMap
command called Query_ClearSelection
in lines 67 - 69. The remaining process
clears the graphics container and
refreshes the map display in lines 70 -
78.

At this point in the analysis, the
application has selected all of the
features of the four layers of interest that
intersect the plume footprint and
exported their records to four separate
dbf tables. The application has also
created a JPEG image of the map display
for use in the final report. The final step
is to open the pre-configured report
template inside of a Crystal Reports
report viewer with lines 9 – 12. An
overview of the steps taken to create the
report is shown in Figure 12.

The final report appears to the
user in a separate window shown in
Figure 11. The Crystal Reports report
viewer allows the user to zoom in and
out, pan, and view the report. The user
also has the option of saving the report
to a pdf or printing the report.

Case Study: An Accidental Chemical
Release Scenario in Scott County,
MN.

Imagine a situation similar to what
occurred after a Canadian Pacific
Railway train derailed in Minot, North

 13

Figure 10. Screenshot of plume footprint in
ArcMap.

Figure 11. Report viewer showing Plume Hazard
Summary.

Press Report

Button

Save
Image

Select By
Plume

Set footprint as
selectable

Select
Footprint

Create
Graphic

Set Points of Interest,
Parcels, Census Data, and

Roads as Selectable

Select By
Graphics

Export Selected
Points of interest to

dbf

Export Selected
Census Data to dbf

Export Selected
Roads to dbf file.

Export Selected
Parcels to dbf

Zoom to
Footprint

Clear Selection

Delete Graphics

Get Report
Template

Open Report
Viewer, Load

Template

Dbf tables used to
feed new report.

Figure 12. Plume footprint analysis and summary report workflow.

 14

‘********************************* Code Used to Create the Plume Hazard Summary Report ***********************************
1. Call ZoomToLayer ‘** Calls a function to zoom to the new plume footprint.
2. Call ExportActiveView ‘** Function to create jpeg of current map view.
3. Call Selectbyplume ‘** Function to perform selection by plume.
 ‘** The code for this function is outlined below.

4. Dim crReport As New CRAXDRT.Report ‘** Creates a Crystal Reports object.
5. Dim crApp As New CRAXDRT.Application
6. Dim crTables As CRAXDRT.DatabaseTables

7. Set crReport = crApp.OpenReport("C:\ALOHA\DATA\Report3.rpt") ‘** Defines a pre configured Crystal Report Template.
8. crReport.UseIndexForSpeed = True

9. Load frmReport
10. frmReport.crvMain.ReportSource = crReport
11. frmReport.crvMain.ViewReport
12. frmReport.Show 1 ‘** Open the Report.

 ‘************************************* Code to Perform Selection by the Plume ***
13. Call SetSelectable("footprints") ‘** Set the footprint layer to the only selectable layer.

14. Dim pMxDoc As ImxDocument
15. Dim pMap As IMap
16. Dim pFeatSel As IFeatureSelection
17. Dim pSelSet As ISelectionSet
18. Dim pActiveView As IActiveView

19. Set pMxDoc = Application.Document
20. Set pActiveView = pMxDoc.FocusMap
21. Set pMap = pMxDoc.FocusMap
22. Set pFeatSel = pMap.Layer(0) ‘** Set the feature layer to the footprint layer.

23. pFeatSel.SelectFeatures Nothing, esriSelectionResultNew, False
24. pFeatSel.SelectionChanged ‘** Select the footprint layer.

25. pActiveView.PartialRefresh esriViewGeoSelection, Nothing, Nothing ‘** Refresh the selection.

26. Dim pEnumFeature As IEnumFeature
27. Dim pFeature As Ifeature
28. Dim pElement As IElement
29. Dim pGraphicsContainer As IGraphicsContainer

 30. Set pGraphicsContainer = pMxDoc.FocusMap ‘** Create a graphic element based on each selected feature
 31. Set pEnumFeature = pMxDoc.FocusMap.FeatureSelection
 32. pEnumFeature.Reset
 33. Set pFeature = pEnumFeature.Next

34. Do While Not pFeature Is Nothing
35. Select Case pFeature.Shape.GeometryType ‘** Determine the geometry type and make the appropriate
36. Case esriGeometryPoint ‘** symbol element.
37. Set pElement = New MarkerElement
38. Case esriGeometryPolyline
39. Set pElement = New LineElement
40. Case esriGeometryPolygon
41. Set pElement = New PolygonElement
42. End Select

43. If Not pElement Is Nothing Then ‘** Give the feature shape to the element.
44. pElement.Geometry = pFeature.Shape
45. pGraphicsContainer.AddElement pElement, 0
46. End If

47. Set pFeature = pEnumFeature.Next ‘** Get the next feature in the selection.
48. Loop ‘** Repeat this process for all features of the footprint.

Figure 13. This code sample illustrates how the Plume Hazard Summary Report is created
and how the data that populates the report is generated.

 15

Dakota in January of 2002. The train
derailment caused a chemical spill that
caused a cloud of toxic ammonia to
disperse over a large area of town.
Hundreds of people suffered injuries and
one man was killed as a result of the
incident.
 Now imagine that emergency
managers had a GIS enabled air
dispersion modeling tool at their
disposal to help analyze the situation.
This tool could provide information on

 ‘*********************************** Code to Perform Selection by the Plume - Continued *************************************

49. Call SetSelectable("pointsofinterst") ‘** Set the points of interest layer to selectable.
50. Call SetSelectable("census_data") ‘** Set the census data layer to selectable.
51. Call SetSelectable("parcels") ‘** Set the parcels layer to selectable.
52. Call SetSelectable("Roads") ‘** Set the roads layer to selectable.
53. Call SetUnSelectable("zip5_a") ‘** Set the zip code layer to selectable.
54. Call SetUnSelectable("County_2000") ‘** Set the county layer to selectable.

55. Dim pGCSel As IgraphicsContainerSelect '** Get the graphics container and select all of the graphics in it.
56. Set pGCSel = pMxDoc.FocusMap
57. pGCSel.SelectAllElements

58. pMxDoc.ActiveView.Refresh
59. pMxDoc.UpdateContents ‘** Update the display.

60. Dim pCmdItem2 As ICommandItem
61. Set pCmdItem2 = Application.Document.CommandBars.Find(arcid.Query_SelectByGraphics) ‘**'Select by graphics.
62. pCmdItem2.Execute

63. Call ExportDBF(pMap, "parcels") ‘** Export the selected parcels to a dbf file.

64. Call ExportDBF(pMap, "pointsofinterst") ‘** Export the selected points of interest to a dbf file.

65. Call ExportDBF(pMap, "census_data") ‘** Export the selected census data to a dbf file.

66. Call ExportDBF(pMap, "Roads") ‘** Export the selected roads to a dbf file.

67. Dim pCmdItem13 As ICommandItem
68. Set pCmdItem13 = Application.Document.CommandBars.Find(arcid.Query_ClearSelection) ‘** Clear the selection.
69. pCmdItem13.Execute

70 Dim pAV As IActiveView
71. Set pAV = pMxDoc.ActiveView
72. Set pGraphicsContainer = pMxDoc.ActiveView

73. pGraphicsContainer.Reset '** Reset the graphics container.

74. Set pElement = pGraphicsContainer.Next
75. pGraphicsContainer.DeleteAllElements '** Deletes the graphic elements.
76. pGraphicsContainer.Reset

77. Set pElement = pGraphicsContainer.Next

78. pAV.Refresh '** Refresh the view.

Figure 14. Continuation of code from Figure 13.

the number of people that will be
affected by the spill, information on
critical infrastructure such as schools,
nursing homes, and businesses that
would be affected. Emergency Managers
could use this information to help make
decisions during time critical situations.
 For our example, a plume
footprint will be generated based on the
release of ammonia, which is a
commonly transported chemical in Scott
County, MN. It is assumed that the

 16

chemical release happened at a busy
intersection in a densely populated area.
First we open the ArcMap project that
contains our tool and data. We then click
on a point on the map to define the
location of the spill as seen in Figure 15.

The ALOHA Plume Model Tool
dialog appears with the real-time
weather for the area that was clicked as
shown in Figure 16. After the dialog box
appears, the user can enter in the
appropriate variables and press the Start
ALOHA button. The parameters are
entered into ALOHA and the user is
presented with the choice of what type
of hazard they would like to model as
seen in Figure 17. In this case, the user
chooses Toxic Area of Vapor Cloud and
press OK.

ALOHA then creates the plume’s
footprint as shown in Figure 18. It is at
this point a user returns to the ArcMap
project and presses the Plot Footprint
button. The plume is imported into
ArcMap as shown in Figure 19. The
footprint is converted to a shapefile and
imported to the map correctly
symbolized. The next step is to press the
Report button to perform the analysis. A
Crystal Report’s report viewer appears
displaying the template. The user then
presses the refresh button to generate the
report (Figure 20). The report can now
be sent to a printer or saved as a pdf.

Figure 15. Location defined by clicking on the
map.

Figure 16. ALOHA Plume Model Tool dialog.

Figure 17. ALOHA software after the variables
have been entered.

Figure 18. The plume footprint created by
ALOHA.

 17

Figure 19. The plume footprint imported to
ArcMap.

Figure 20. The final result, a hazard summary
report.

Report Results

The results of this analysis show a fairly
large population that is affected by the
hypothetical chemical release (Figure
21). The population information section
shows the total population of affected
people to be 4,940. There are some
additional population statistics in this
report that can be useful to emergency
managers, especially for identifying the
number of people most vulnerable to a
chemical release like the very young and
the elderly. For example, because the
data is broken down by age groups, an
emergency manager can ascertain there
are 1,151 people who were 50 years old
at the time of the census and would be
most likely to be at home during the day.
Previously, this type of analysis required

the help of a fairly experienced GIS user.
Using this automated tool, an
inexperienced GIS user can conduct this
type of valuable analysis in a matter of
minutes.

The next section of the report
encompasses parcel information. This
section reveals there are 1,372 parcels
encompassing an area of 1,032 acres
affected by the chemical plume. This
data can help emergency managers
gauge the extent of the potential cleanup
and evacuation activities.

 The road information section
shows that there are 239 road segments
that are affected by the chemical release.
This data could be used to determine the
number of roads that will need to be shut
down to secure the area.

The housing information section
of the report has several sections that
that reveal how many buildings are
within the plume area. One item that is
important to emergency managers is the
number of family units, which can reveal
the residential makeup of the plume
hazard area. In this case there are 1,248
family housing units in the plume area,
which indicates that the area is highly
residential. Another important piece of
information is the number of rented
units. This can help the emergency
manager plan for the type of residential
units that will need to be evacuated. In
this case, there are 170 rental units,
which indicates that they will be
evacuating mostly residential homes
rather then apartment buildings.

The final section of the report is
the critical infrastructure section. This
section shows the name and address of
critical infrastructure such a schools and
hospitals that are within the plume
hazard area. In the case of this incident,

 18

Figure 21. Sample report generated for case study.

 19

there is one hospital and two schools that
are affected by the chemical plume.

This information, which can be
calculated in a matter of minutes, is a
valuable resource for emergency
managers. The data contained in each
report can aid in the decision making
process and add to the overall situational
awareness of a chemical response. The
tool provides a means for an
inexperienced GIS user to conduct GIS
analysis quickly without a lot of training.

Conclusion

Emergency Managers have realized the
benefits of using Geographic
Information Systems for visualization of
information and as an important
planning tool. The combination of this
technology with the modeling
capabilities of air dispersion modeling
software has proved to be an invaluable
resource for responding to chemical
release scenarios. These tools can be
used to respond to emergency release
scenarios like natural, accidental, and
intentional chemical releases and also
for planning and training purposes like
contingency planning and short-term site
assessments.

The use of GIS enabled air
dispersion modeling provides an
additional level of situational awareness
not available from either stand-alone
GIS software or dispersion modeling
software and it should be a tool available
to every emergency manager.

References

Bacon, D. 2000. Real Time Modeling
 and Emergency Response Forecast.
 Mesoscale Atmospheric Dispersion.
 pp. 171-192. Retrieved February 10,
 2007 from EBSCO database.

Chakraborty, J. and Armstrong, M.
 1994. Estimating the Population
 Characteristics of Areas Affected by
 Hazardous Materials Accidents. GIS-
 LIS. Pp. 154-163. Retrieved February
 10, 2007 from EBSCO database.
Hunt, K., 2005. Emergency Response
 Planning and Integrating ALOHA
 Plume Models. ArcNews. Summer
 2005. Retrieved February 12, 2007
 from http://www.esri.com/news/
 arcnews/summer05articles/genesee-
 county.html.
Turpin, R. 2004. Air Plume
 Modeling… Planning or Diagnostic
 Tool. Environmental Protection
 Agency. Retrieved February 17, 2007
 From http://www.ofcm.gov/
 atdworkshop/proceedings/
 session1/campagna.pdf
Tomaszewski, B. 2003. Emergency
 Response and Planning Application
 Performs Plume Modeling. ArcUser.
 December – October. Retrieved
 February, 17 2007 from
 http://www.esri.com/news/arcuser/
 1003/plume1of2.html
Westbrook, J. 1999. Air Dispersion
 Models: Tools to Assess Impacts from
 Pollution Sources. Natural Resources
 & Environment. Spring 1999.
 Retrieved January 15, 2007
 2005 from, EBSCO database.

 20

	A GIS Enabled Air Dispersion Modeling Tool for Emergency Management
	Abstract
	Introduction
	
	Background
	Methods
	
	Tool Creation
	Real-Time Weather Data
	Passing Variables to ALOHA
	Obtain Basemap Data
	Plume Footprint Analysis and Summary Report
	Plume Analysis

	Report Results
	
	Conclusion
	References

