
Hamalainen, D. 2020. Validation of a Machine-Learning Based Vehicle Trajectory Prediction Model with

Improved Data and Data Management. Volume 23, Papers in Resource Analysis. 24 pp. Saint Mary’s

University of Minnesota. University Central Services Press. Winona, MN.

Validation of a Machine-Learning Based Vehicle Trajectory Prediction Model with

Improved Data and Data Management

Daniel Hamalainen

Department of Resource Analysis, Saint Mary’s University of Minnesota, Minneapolis MN

55404

Keywords: Neural-Networks, Convolutional Social Pooling, Automated Vehicles, Long Short-

Term Memory, Trajectory Prediction, NGSIM, highD

Abstract

The use of neural-networks and machine learning to create and train trajectory prediction models

has shown promising results for automated driving technologies. In this paper, the results of such

a model are validated with improved data and preprocessing techniques. The model explores Deo

and Trivedi’s (2018) Convolutional Social Pooling model. The original model is recreated,

trained, and evaluated with the original NGSIM dataset, then trained and evaluated with the

newer highD dataset. Results are measured and compared with root-mean-squared error. The

cleaner and more processed highD dataset shows a lower average error, but results are

inconclusive as to why this is so. Discussion of these results illuminates both future possibilities

and concerns in the fields of trajectory prediction and automated vehicle technology.

Introduction

In 2016, the United States lost over 37,000

lives to traffic accidents on highways

(National Center for Statistics and

Analysis, 2018), and between 94 and 96

percent of those accidents were due to

human error (NCSA, 2017). These statistics

are some of the main motivators for

autonomous vehicles, which eliminate

human error altogether. Before

governments allow fully autonomous

vehicles (AVs) to be used on a mass scale,

they must prove their worth by showing the

ability to avoid collisions and make roads

safer. A sensible tactic would be to predict

dangerous scenarios before they occur. In

the long-term, predicting may be

unnecessary since AVs can signal

intentions to their counterparts and

coordinate. In the near term, however, such

will only be partially possible due to the

presence of conventionally driven vehicles,

whose movements are dictated by human

motor skills, cognition, and distractibility.

AVs able to predict CVs movements will

therefore be most prized not only for their

ability to avoid dangerous situations, which

would have external benefits to other road

users, but also for their ability to drive

efficiently by avoiding potential slowdowns

both locally - in a particular lane - and

more globally - on a particular road.

These prospects have generated a

recent boon in the field of vehicle trajectory

prediction research, particularly via the use

of machine learning on neural networks.

One such study is that of Deo and Trivedi

(2018). Though the two are not the first to

leverage machine learning to predict vehicle

movement, their study is novel in that it

combines both recent travel patterns,

specifically the last three seconds of motion,

and traffic context to predict the next five

seconds of a vehicle’s trajectory. Their

model does so relatively accurately,

outperforming all other models at the time

of publication (Deo and Trivedi, 2018).

2

The Trajectory Prediction Model: Using

Neural Networks to Predict Vehicle Motion

Deo and Trivedi’s (2018) model is a neural

network, or a series of interconnected

models where data is passed from model to

model until a final output is produced. The

number of models featured varies from

network to network: some feature a one or

two while others feature dozens. The exact

design of the network depends heavily on

the ends it serves, and since trajectory

prediction is a type of sequence prediction,

numerous models exist for such an end. One

of such models is that of a specific type of

recurrent neural network called long short-

term memory (LSTM), which uses the

relationship between elements in a sequence

to predict an output. Since vehicle motion is

a time-series of interdependent positions, an

LSTM fits the purpose of trajectory

prediction quite well.

Another critical component of their

network is the use of convolutional social

pooling to provide a proper traffic context

for the prediction of future trajectories.

Since the trajectory history of neighboring

vehicles are also included as inputs, they,

too, are processed through an LSTM, but for

the model to decipher the meaning of these

outputs, Deo and Trivedi (2018) process

them through a series of layers they call

convolutional social pooling. These layers

generalize the meaning of the various spatial

configurations of neighboring vehicles so

that when the model is presented with a

configuration not yet witnessed, the model

will be able to relate it to patterns seen

previously.

The final feature of note in their

model is the incorporation of encoded

driving maneuvers, or well-defined, logical

adjustments to a driver’s path. Two of such

adjustments include lane changes and

breaking, which are not only greatly

impactful on a vehicle’s trajectory, but are

also greatly dependent upon the traffic

scenario in which a driver finds her or

himself in. These two aspects make

maneuvers particularly useful to a model

that uses neighboring trajectories to predict a

vehicle’s future path, since the maneuver

itself can be predicted and then incorporated

into the prediction of the exact trajectory.

 These aspects together combine to

create an estimation of a vehicle’s future

path given the conditions of its former path

and those of its neighboring vehicles. A

more fully fleshed outline of their model can

be found in their 2018 paper,

“Convolutional Social Pooling for Vehicle

Trajectory Prediction,” but for the most

detailed description, the code for their work

is posted on GitHub (Deo and Trivedi,

2018).

Deo and Trivedi’s (2018) model has

since been built upon by numerous

published studies; however, the data in that

model did not contain vehicle trajectory

data. Because of such, the two researchers

developed their model with the Federal

Highway Administration’s (FHWA) Next

Generation Simulation dataset (NGSIM),

which tracks the motion of thousands of

vehicles from four locations, two of which

are on US freeways. The data from those

two freeways, Oakland’s Interstate 80 and

Los Angeles’s US 101, were the two

collections used by Deo and Trivedi (2018).

The NGSIM dataset is one of the only

massive trajectory datasets available, yet it

is riddled with anomalies.

Original Model Data Challenges

Issues with the NGSIM dataset were first

pointed out by a few studies in 2008 that

found noise in the vehicle motion data, yet it

was not until 2011 that an exhaustive search

pointed out flaws that were beyond the

scope of correction (Coifman and Li, 2017).

In that year, one study noted the irregularity

3

of not only the velocities and accelerations

but also of the relative positioning between

vehicles (Punzo, Borzacchiello, and Ciuffo,

2011). Most notably, the study found that

numerous vehicles overtook the position of

their leading vehicles: a clear indication of a

collision. Though it is possible for there to

be a collision or two, the data collected from

Interstate 80 alone features 747 vehicle

tracks like this.

 Along with the collision issue, they

point out two other pervasive issues:

abnormally high acceleration values over

3.05 m/s2 and abnormally steady yet slow

speeds. The latter can be found by looking

for acceleration values of zero, which

indicate constant velocity. This can be

expected if vehicles are stopped, but these

acceleration values are found at non-zero

speeds. Constant speeds can also be found in

free-flow traffic, especially with the aid of

adaptive cruise control, but these speeds are

at or below 1.52 m/s which is almost never

seen (Coifman and Li, 2017). They explain

these abnormalities as being due to the

nature of NGSIM’s data collection

procedure, which utilizes multiple cameras

to record vehicle motion then imposes an

automated tracking algorithm to extract the

trajectories at a time when such automation

was in its infancy. Coifman and Li then

show that the errors can only be repaired by

re-extracting vehicle positions from the

original recordings since the positions

themselves are erroneous. The two did such

but only for one of the six freeway subsets

and only from one of the multiple cameras

used in the original data collection.

A Possible Solution

Past studies suggesting the NGSIM dataset

is unreliable have not deterred researchers

from using the data. These errors may

introduce question into models since the

efficacy of those models and applications

are proven using samples outside the scope

of reality. Fortunately, new vehicle

trajectory data - the highD dataset - was

released in 2018 and could provide a reliable

way to evaluate models like Deo and

Trivedi’s (2018). Derived from German

freeway traffic, the highD dataset features

all the elements of the NGSIM dataset and

may hold several advantages over the older

collection. Its engineers report a positional

accuracy within 10 centimeters: an

improvement that may be due to the

advances in digital image processing since

2005 or because the vehicles are recorded

from a single camera flying overhead

instead of multiple cameras recorded at an

angle (Krajewski, Bock, Kloeker, and

Eckstein, 2018).

 The arrival of the highD dataset

presents an opportunity to validate Deo and

Trivedi’s (2018) model by training and

evaluating it with improved data. Because

the highD and NGSIM datasets differ in

important ways, the two’s methods, scopes,

and general features will be compared, as

well as their traffic properties and

anomalies. This is followed by a detailed

outline of the preprocessing steps Deo and

Trivedi followed to prepare the data along

with rationale for the changes made to both

improve data integrity and address the new

dataset’s differences from the old. Finally,

an overview of the training and evaluating

processes is presented coupled with the

reasoning for the minor adjustments made to

them followed by a discussion of the results.

Methods

Dataset Comparison

Both the NGSIM and highD data come from

video recordings taken on days with clear

visibility and no precipitation. Both come in

the form of comma separated value tables

4

(CSVs) where each row corresponds to a

specific vehicle at a specific frame in the

recording. The CSVs are made up of entries

that each correspond to a vehicle-recording

frame pair. They provide local vehicle

positions in the form of an x-value, or the

distance from the starting-line of the study

zone, and a y-value, or the distance from the

boundary on one of the sides of the road, as

well as the vehicle’s lane, velocity, and

acceleration at that frame.

The NGSIM collection comes from

six different CSVs: the three that come from

Oakland’s Interstate 80 (westbound) were

gathered on April 13, 2005 for three 15-

minute periods in the afternoon while the

three that came from Los Angeles’s US

Highway 101 (southbound) were collected

on June 15, 2005 for three 15-minute

periods in the morning. Synchronized video

cameras perched atop 30-plus story

buildings adjacent to the freeways, recorded

traffic across Interstate 80’s six main lanes

and on-ramp and US 101’s five main lanes

and on-off-auxiliary-lane (Figure 1).

Figure 1. Schematic diagrams of NGSIM’s study sites on

Oakland’s Interstate 80 (top) and Los Angeles’s US

Highway 101 (bottom).

Software created by Cambridge

Systems extracted the trajectories from the

video, providing positions every one-tenth

of a second. Though the exact resolution of

the cameras is unknown, the researchers

down sampled the resolution to 640 x 480

pixels (Coifman and Li, 2017). These six

subsets combine to provide the trajectories

of 11,779 vehicles across 8,665,320 total

positions. The distribution of these

trajectories across the subsets along with the

recording times can be examined in

Appendix A.

While the NGSIM data are spread

across six subsets, the highD data come

from 60 different subsets, with each coming

from one of six different 420-meter freeway

sections near Cologne, Germany. The data

features vehicles traveling in both directions

of traffic. The time-duration of these subsets

vary from six and half minutes to just over

20 minutes, with the majority spanning

around 18 minutes. A drone (DJI Phantom 4

Pro Plus) flying 100 meters over each

roadway recorded traffic in 4096 x 2160-

pixel resolution, collecting vehicle positions

every 25th of a second. An adapted U-Net

neural network architecture classified each

pixel as belonging to a vehicle or the

background. A tracking algorithm extracted

the vehicle trajectories by comparing the

image classifications between frames and

the objects’ relative distances. After

smoothing positions and speeds the final

highD data features a total of 110,516

vehicles across 39,725,708 positions. When

down-sampled to the NGSIM frame rate of

one-tenth of a second, the number of

positions totals to 15,890,283 entries. The

exact distribution of these trajectories can be

examined in Appendix B.

Comparison of Traffic Patterns

One thing that may affect the model’s

performance aside from the accuracy of the

data is the difference in traffic patterns

between the two collections. The fact sheets

on the NGSIM dataset (Colyar and Halkais,

2007a; 2007b) posit the time periods

featured represent the transition between

uncongested and congested periods, but the

dataset itself can reveal exactly what traffic

was like.

5

 The distribution of vehicle velocities

is a good indicator for the purposes of this

study for two reasons. For one, roadways

with sufficiently high congestion will have a

breakdown in the flow of traffic due to

vehicles slowing down, but the distribution

itself may be more important than the exact

cause of such speeds because it shows the

variety of trajectories that the model will be

exposed to. Though an average alone may

be misleading due to outlier-skewing, when

supplemented by the median, range, and

standard deviation, velocity can give good

insight into the types of trajectories featured

in each dataset.

 Since the highD dataset has a

specificity of 25 positions per second

compared to NGSIM’s 10, the velocities are

averaged by the second. Arrays of velocities

are created using Python and the open-

source data processing package NumPy.

 The resulting velocities somewhat

confirm NGSIM’s claims, with a low

average velocity of 7.50 m/s (meters per

second) typical of congested conditions, and

a maximum velocity of 28.99 m/s indicating

that at least some vehicles drove at free-flow

speeds. However, the percentiles show that

most of the vehicles travel at a slow

velocity. The median velocity for all the

NGSIM velocities is 7.31 m/s. With a

standard deviation of 4.48 m/s, and with

95% of the velocities falling between zero

and 17.23 m/s, the majority of the NGSIM

data can be deemed as coming from some

form of congestion.

While the NGSIM data is primarily

concentrated during periods of congestion,

the velocities found in the highD vary wildly

by comparison. With an average of 28.14

and a median of 28.73 m/s (about 63 and 64

mi/h), the highD velocities are much higher.

Though the standard deviation (6.91 m/s or

about 15.50 mi/h) is greater than NGSIM’s,

it is not fully indicative of the highD’s

variance: 95 percent of the velocities are

found between 9.63 and 39.38 m/s (22 - 88

mi/h), a range far greater than NGSIM’s.

This can be seen most clearly in Figure 2,

which compares the ranges of velocities.

The breakdown by subset can be seen in

Appendix C.

Figure 2. The distributions of speeds found in the NGSIM

and highD datasets, with the latter displaying greater

diversity than the former.

Comparison of Errors

This study seeks to validate Coifman and

Li’s (2017) findings through conducting an

error search on both the NGSIM and the

highD dataset. While the former features a

distance headway (DHW) for each entry, it

is measured by the distance between the

front of the vehicle and the front of its

leading vehicle instead of the leading

vehicle’s back. They are therefore modified

by subtracting the length of each lead-

vehicle from the DHW originally provided.

As for the velocities and accelerations, the

originals may be a product of how they were

measured rather than a product of the

changes in positions, so to validate

consistency, these, too, are calculated via

𝑣𝑖 ∶=
𝑥𝑖 + 1 − 𝑥𝑖 − 1

𝑡𝑖 + 1 − 𝑡𝑖 − 1
, and

𝑎𝑖 ∶=
𝑣𝑖 + 1 − 𝑣𝑖 − 1

𝑡𝑖 + 1 − 𝑡𝑖 − 1
 ,

6

where xi + 1 and xi - 1 are the positions before

and after the frame, t, of entry i. These

measures differ very little to not at all from

the originals, showing that they are

consistent with the change in positions and

are therefore representative of the

trajectories themselves.

 Across all subsets, 10.51% of

vehicles feature negative distance headways.

This is normally an indication of a vehicle

crash, and for 10% of these vehicles to have

an accident would be a newsworthy incident

and one the FHWA would most likely note

if true. Nearly all vehicles accelerate over

3.05 m/s2 at one position or another. 3.30%

of vehicles feature low, constant velocities,

which are indicated by an acceleration of

zero coupled with a velocity at or below

1.52 m/s. The exact distribution of these

errors can be examined in Appendix D.

In addition to the erroneous DHWs,

velocities, and accelerations, the earliest

vehicles featured in each subset do not have

a lead-vehicle. This is a problem because the

prediction model uses the trajectories of

both the vehicle in question and its

neighbors. Though only a limited number of

vehicles suffer from this lack of context, it

may still impact the model’s ability to learn.

A similar yet more pervasive issue is the

degree of variation in starting positions. It

would be one thing if these starting positions

varied only between subsets or between the

mainline and the on-ramps, but the variance

can be found within any given lane of any

given subset. This is clearly an error since

vehicles were obviously not dropped from

the sky onto the road while others drove into

view conventionally, and it exacerbates the

missing-neighbors problem since some

vehicles will be without all their neighbors

for a stretch of time.

 The first problem can be easily fixed

by simply omitting the early vehicles from

the sample-feed while keeping their track

history for the purpose of providing

neighboring samples their full traffic

context. The second issue could be fixed if

the start positions are all beyond a certain

threshold, which could be as a cutoff for

whether to train or evaluate with any given

sample. Such is the case for most of the

subsets: for these, all lanes in the mainline

solely feature starting positions within 50

meters or so of the start-boundary for the

study, while the starting positions for on-

ramp vehicles are consistently within a

different but specific range. However,

starting positions in the fifth lane of two US

101 subsets range from 0.61 to 155.48

meters away from the start of the study

region. Though there are only five vehicles

starting beyond 150 meters, they still pose a

challenge since by that distance, the on-off-

auxiliary lane is fully connected to the

mainline, making such a threshold infeasible

to use as a criterion for inclusion as it would

omit an important section of the freeway.

 By contrast, the highD data contains

little to none of the abnormalities found in

NGSIM. The former has no vehicles with

negative DHWs nor do any feature low

velocities with no acceleration. Some

trajectories accelerate just slightly over 3.05

m/s2, but such are sparsely populated

throughout the 60 subsets.

 The highD dataset does feature

errors, though. The most glaring of these

occurs in three subsets of the same location,

where trajectories from one traffic direction

contains a good portion of vehicles going

the wrong direction. These trajectories occur

during what appears to be heavy congestion:

the velocities continually slow till they reach

0 m/s and then below it. Since these entries

are the only where vehicles slow down to a

standstill throughout the entire dataset, it is

likely that the tracking algorithm breaks

down when faced with such behavior. These

trajectories cannot be rectified since it is

uncertain whether the vehicles are moving

7

slowly or not at all and therefore could not

be used to train or evaluate the model.

 Because the backwards vehicles are

contained to three of the 60 subsets and in

only one direction, the issue is relatively

minor compared to the far more pervasive

issue of varying start positions. Like with

NGSIM, the trajectories in the highD dataset

do not consistently begin at the same point,

yet unlike NGSIM, the distribution of these

initial positions is far wider. Most of the

vehicles in the highD set begin their

trajectory at or before the starting point of 0,

but 556 vehicles start their tracks at marks

greater than 25 meters, and that excludes

vehicles arriving at the study area when

recording began and vehicles belonging to

the three subsets already omitted. Because

the span of each study area for the highD

dataset is about a fifth shorter than the

shortest study area featured in NGSIM, the

starting threshold solution proposed earlier

would sever off a significant number of

entries simply to preserve the neighboring

context for a handful of vehicles. This

dilemma is exacerbated further by the fact

that across the 57 preserved subsets, 25

vehicles start at positions over 100 meters

into the study section, three at 150 meters in,

and two at the 200-meter mark.

 Though the highD dataset is clean of

the NGSIM errors, its own inconsistencies

present a challenge for trajectory prediction.

Therefore, these errors must be overcome

before training and evaluating the model.

Error Processing the highD Dataset

Two remedies are implemented to solve the

issue of various start positions. Since most

of the vehicles begin their tracks within a

small range of lateral positions, an initial

cutoff is created by setting such to zero then

incrementally increasing it by two meters

until doing so does not add any new start

positions to the cut-off region.

As for the vehicles with starting

positions beyond the cut-off, the absence of

their starting trajectories poses an issue for

their would-be neighbors. A remedy would

be to remove the entries of would-be

neighbors at the frames in which an adjacent

vehicle is missing. However, since the exact

number of missing frames is unknown, the

entries of their would-be-neighbors cannot

be removed without an estimation of how

long it took for the vehicle to get from the

cutoff to its first recorded position. Such an

estimation can be made by leveraging the

range of times it took for other vehicles in

the same subset to get from the cutoff to the

recorded starting point of the vehicle

missing the beginning of its track. Because

this duration is correlated with the velocity

at the fake starting position, a linear model

is created to predict how long it took for the

vehicle in question to get from the cutoff to

its first recorded position. This linear model

is defined as

𝑓𝑑𝑖�̂� = 𝛽0 + 𝛽1𝑣𝑖𝑥,

where 𝑓𝑑𝑖�̂� represents the number of frames

for a vehicle of subset i to get from the

cutoff to position x, 𝛽0,1 represent the

coefficients, and vix represents the velocity

of the vehicle at position x. For each given

fake starting position, a model is created by

providing a NumPy array containing the

velocities of each fully tracked vehicle in the

subset at or near position x and the number

of frames it took for that vehicle to get from

the cutoff to x. This array is then fed to a

linear model creator imported from the

Python package scikit-learn. Using the

frame-duration generated by the linear

model, a final safe-estimate is made via

𝑚𝑓0,𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = 𝑓0,𝑣𝑒ℎ𝑖𝑐𝑙𝑒 − 𝑓𝑑𝑖,�̂� − 2𝜎𝑖,𝑥,

where vehicle is the vehicle missing the

beginning of its trajectory, f0, vehicle is its first

recorded frame, and 𝜎𝑖,𝑥 is the standard

deviation in the number of frames it takes

8

for vehicles to get from the cutoff to x. The

earliest missing frame combined with the

frame prior to f0, vehicle form the safe estimate

of missing frames for vehicle. All missing

frame estimates are stored to be used for

filtering the entries of any would-be

neighbors at those frames.

Deo and Trivedi Preprocessing Procedure

Both the NGSIM and the highD datasets

require certain preprocessing steps before

feeding the samples to the model for

training. This includes extracting relevant

data fields, generating new ones, and

partitioning the data into two sections: one

for training and the other for evaluation. Deo

and Trivedi’s (2018) steps for doing such

are presented for further discussion. These

steps, along with the error processing

mentioned earlier, are all performed in

Python by using NumPy arrays to store and

transform the data prior to training and

evaluating the model.

 To predict a vehicle’s trajectory, the

model takes three seconds worth of a

vehicle’s positions as input, which equates

to 30 individual entries since the frame rate

for the NGSIM dataset is 10 frames per

second. At each of these entries, the model

takes the following: the x and y-coordinates,

the lane identification number, the

encodings for driving maneuvers, and the

neighboring vehicles’ identification numbers

and positions relative to the vehicle in

question.

To encode the lane change maneuver

at a given time (or entry), the vehicle’s lanes

four seconds before and after are compared.

If the lane stays the same, the maneuver

field is encoded with “1” (no lane change),

“2” if the lane increases in that span (change

from left to right), and “3” if the lane

decreases in that span (change from right to

left).

As for the braking maneuver, a

similar method is followed, but instead of

looking four seconds forward and back, the

positions corresponding to three seconds

before and five seconds after are examined.

The change in x positions between the

earlier and current frame is compared with

the change in x between the current and later

frame. If 𝑑𝑥𝑓𝑢𝑡𝑢𝑟𝑒/𝑑𝑥𝑝𝑎𝑠𝑡 is less than 0.8,

then the braking maneuver for that entry is

encoded with “2” to represent that braking

did occur; in any other case, the entry is

encoded with “1” to represent no braking

maneuver.

 Because the neighboring vehicles

must be readily accessible for the model, a

13 x 3 spatial grid is defined for each entry.

Each of the three columns represents a lane:

the first corresponds to the neighboring left

lane, the second to the entry’s own lane, and

the third to the right lane. Within each lane’s

columns, the rows are separated by 4.57

meters, or about one car length (Deo and

Trivedi, 2018). Therefore, neighbors are

defined as being in the same lane or one

adjacent to the target vehicle and within

27.42 meters lengthwise. The exact row the

neighbor belongs to in its lane’s column is

determined by the formula

𝑟𝑜𝑤 = 𝑟𝑜𝑢𝑛𝑑(
𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟− 𝑥𝑖

4.57
),

where round is to the nearest integer. The

resulting row is then populated with the

neighbor’s identification number in the

column corresponding to the neighbor’s

lane.

 Once the arrays of each subset

feature all relevant data fields, they are

ready to be partitioned into their training and

evaluation sets. Deo and Trivedi’s (2018)

partitioning method divides each subset by

vehicle identification number. Vehicle ID’s

at the 80th percentile or below are placed in

the training set while the rest are put in the

evaluation set. Each entry is then marked

9

with an identification number for the subset

it originally belonged to.

 Before merging the partitioned

subsets into their train or evaluate set, each

vehicle’s track has the first three and last

fifth of a second filtered out so to allow for

predictions on any of the used samples.

Finally, the filtered tracks are merged into a

single array that will function as the set of

samples from which predictions will be

made while the full tracks are placed in a

dictionary data structure where the full track

can be found with its vehicle and subset

identification numbers when needed.

Missing Neighbors and Biased Partitioning

The preprocessing steps outlined above may

be improved with respect to the creation of

the neighbor grid. This is because the

method for filling the grids has no recourse

for instances where two or more vehicles are

assigned to the same index: if a vehicle is

already encoded into an index, its

identification number is overwritten when a

new vehicle is assigned to it. Though the

highD dataset never suffers from such,

across all entries in the NGSIM dataset, over

116,000 instances of shared-grid spaces

occur. The issue is amplified even further by

the partitioning method. Since partitioning is

based on identification number, which is

primarily a product of when the vehicle was

recorded, the splits correlate to time;

vehicles in the training set will mostly

feature earlier frames than those of the

evaluation set. Some frames, however, will

be shared by both sides of the split, thereby

separating vehicles from their neighbors.

Another consequence of the

partitioning method are biases towards

earlier frames in the training set than the

evaluation set. This is an issue because

earlier frames typically feature less

congestion than later ones, meaning the

types of trajectories featured in one will

favor certain traffic conditions different than

those in the other.

A more complete neighbor grid can

be generated by using smaller grid spacing

or by redirecting vehicles with the same

index to different indices within the grid,

and a framebuffer would ensure that

vehicles are not separated from their

neighbors during partitioning and that the

two sets are not exposed to the same entries.

However, these tactics have their own

consequences. Redirecting vehicles to

different indices or decreasing the distance

between indices in the neighbor-grid may

distort the data somewhat by presenting

vehicles to be at different grid locations than

they really are. Partitioning with a frame

buffer would omit samples to be used for

training or evaluation, and the frame buffer

would not solve the issue of biased

partitioning. The nature of partitioning a

subset will always face an inevitable trade-

off. On the one hand, splitting the data by

frame, positioning, or any other data field

will lead to some sort of bias; on the other, a

randomly partitioned subset will sever

vehicles from their neighbors. A way to

partition unbiasedly while maintaining the

connection between neighboring vehicles

would be to allow the model to view the any

neighboring track regardless of its assigned

set. Such would destroy the integrity of the

train-evaluate split altogether, since the

model would have tangential access to the

evaluation set’s data: a process tantamount

to cheating on an exam.

Because of the spatial-temporal

nature of traffic, there is no clean way to

split a single subset. Both the partitioning

issue and the index-collisions are therefore

left unresolved, and the NGSIM data are

used only to verify that the model itself

produces similar-enough results to those of

Deo and Trivedi’s (2018) work.

10

Preprocessing the highD Dataset

The highD dataset differs from the NGSIM

dataset in ways that completely avoid the

preprocessing complications that plague the

latter. The spacing between vehicles in the

highD data is sufficiently large enough to

avoid a single instance of index collision

when generating an entry’s neighbor grid,

and the multitude of subsets from the same

locations allows the collection to be

partitioned without dividing a single subset.

Before partitioning or conducting most of

the preprocessing steps outlined above, the

subsets required additional steps to ensure

consistency both between the trajectories

and between the highD dataset and the

NGSIM dataset.

 While each vehicle’s position comes

from its front and center in the NGSIM data,

the positions in the highD data come from

the upper-left corner of the bounding box

generated during object tracing. For vehicles

in the upper-lanes of traffic, this corresponds

to the right-hand side of the front bumper

but corresponds to the back-left for vehicles

in the lower lanes which are heading in the

opposite direction. Furthermore, because the

positions within a subset are based on the

coordinates within the study site regardless

of driving direction, vehicles in the upper-

lanes featured decreasing positions (from

420 meters down to zero) while vehicles in

the lower-lanes featured increasing

coordinates (from zero to 420).

Because the model is primarily

concerned with the change in position over

time, the fact that positions are not based on

the front and center of the vehicle is not of

great importance so long as such is

consistent. It does, however, greatly affect

lane changes. Vehicles in the upper-lanes

are often found to switch to the right-hand

lane before quickly moving back to their

original lane, while vehicles in the lower-

lanes can be found to move from their lane

to the lane on their left before quickly

moving back. These are not real lane

changes but rather vehicles swaying slightly

out of their lane then adjusting back to it.

Positions therefore needed to be adjusted to

represent their front-and-center as opposed

to the upper-left-corner positions.

 After splitting each subset into two

based on direction of travel, adjusting the

positions to correspond to the front-and-

center of each vehicle requires the vehicle’s

dimensions and the angle of its trajectory.

The highD dataset does not explicitly give

the trajectory angle for each entry but does

so implicitly by providing the velocities

along the x and y axes. The angle of travel,

𝜃, is derived by taking the arctangent of the

two velocities. For vehicles going from left

to right, the front-center position for each

vehicle is derived by

𝑥𝑓𝑟𝑜𝑛𝑡 = 𝑥 + 0.5 ∗ 𝑤 ∗ 𝑠𝑖𝑛𝜃 + 𝑙 ∗ 𝑐𝑜𝑠𝜃,

𝑦𝑐𝑒𝑛𝑡𝑒𝑟 = 𝑦 − 0.5 ∗ 𝑤 ∗ 𝑐𝑜𝑠𝜃 + 𝑙 ∗ 𝑠𝑖𝑛𝜃,

where w and l correspond to the width and

length of the vehicle in question, and x and y

correspond to those values for the entry in

question. The equivalent for vehicles

moving from right to left are

𝑥𝑓𝑟𝑜𝑛𝑡 = 𝑥 − 0.5 ∗ 𝑤 ∗ 𝑠𝑖𝑛𝜃, and

𝑦𝑐𝑒𝑛𝑡𝑒𝑟 = 𝑦 + 0.5 ∗ 𝑤 ∗ 𝑐𝑜𝑠𝜃.

After these translations, to avoid any

other possible confusion for the model, the

direction of travel for vehicles in the upper

lanes needs to be reversed so their x-

coordinates ascend from zero to 420 rather

than descend from 420 to zero. To do so, the

x-coordinates must be reflected about the y-

axis. Likewise, both the y-coordinates and

the lane identification numbers need to be

reflected about the x-axis so that lane

changes would not be distorted. Reflections

XR, YR, and LR are expressed by

𝑋𝑅 = −(𝑋 − 𝑚𝑎𝑥(𝑋)),

11

𝑌𝑅 = −(𝑌 − 𝑚𝑎𝑥(𝑌)),

𝐿𝑅 = −(𝐿 − 𝑚𝑎𝑥(𝐿)),

where X, Y, and L represent the entire array

of values for x, y, and lane ID that belong to

the trajectories in the upper-lanes of a

subset, and max represents the maximum-

value function. These equations have the

effect of taking the largest value and making

it the smallest and vice-versa: if the max

value for a field is 20, then all values of 20

become zero, all values of 19 become one,

values of 18 become two, and so on.

 The final additional step is to reduce

the amount of memory required to store the

data so the model can process it more

quickly. In their original state, the arrays

store the data with 32-bits for each datum.

Only the positional coordinates, which are

given in meters to the thousandths, require

more than 16 bits and are barely over its

limit. Because the highD engineers state its

accuracy to be within 10 centimeters of

error, the centimeter unit can be discarded.

From there, the units are converted to

decimeters, at which point the data can be

stored in NumPy arrays as unsigned-16-bit

integers. However, the machine learning

environment used for training and

evaluating the model cannot process such a

datatype: it can only process signed-16-bit

integers, and in such a form, the largest of

the x-coordinates would be over the capacity

limit and lose its value in storage. To work

around this, the x-coordinates of each subset

are “centered” at zero by subtracting the

median-x-value from the entirety of the

subset’s x-coordinates. In this state, none of

the x-values exceed the lower or upper

limits for NumPy’s 16-bit integer datatype.

 After this conversion, the original

preprocessing steps are conducted in the

same way as outlined earlier. Filtering also

occurs, but the missing frames kept earlier

are used to filter out any would-be neighbors

of vehicles as well. To determine if a vehicle

would be a neighbor, an x position for the

vehicle is required across its missing frames.

The x for each missing frame is estimated by

assuming a constant velocity from the cutoff

to the first-known position. Because this is

an estimation, the neighbor-radius is

increased to 40 meters to account for the

likely error.

 Finally, the subsets are assigned to

train and evaluate sets. To ensure

proportionality, the allocation of subsets is

selected so that the total number of vehicles

belonging to the training set is four times as

many as the number in the evaluation set, or

the same proportionality as in Deo and

Trivedi’s (2018) study. To ensure exposure

to locations, subsets are allocated so that the

evaluation set has at least one subset from

each location in both directions of travel. All

possible allocations are produced that meet

these criteria; from these, the allocation

where the training set’s traffic conditions

differ the least from that of the evaluation

set is chosen to be the final.

 To best compare the overall variety

of traffic conditions featured in the

allocation possibilities, traffic flow per lane

is used. The traffic flow per lane for a given

subset is determined by the equation

𝑓𝑙𝑜𝑤 =
|𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠|

|𝑙𝑎𝑛𝑒𝑠|∗|𝑠𝑒𝑐𝑜𝑛𝑑𝑠|
,

where |vehicles| is the number of vehicles in

the subset, |lanes| is the number of lanes,

and |seconds| is the duration of time for the

subset (Hall, 1992). The composition of

each possible training and evaluation set can

be determined by using the weighted

average and weighted standard deviation of

traffic flow. The weights for such are

determined not by the number entries

originally in each subset but rather by the

number of kept entries after all

preprocessing, since the model will gain

exposure to these traffic conditions only via

those kept. The weighted average of one of

12

the splits can be derived by

𝜇𝑁 = ∑ 𝑤𝑖 𝑓𝑙𝑜𝑤𝑖
|𝑁|
𝑖 = 1 ,

where |N| represents the number of subsets

in N, and wi represents the assigned weight

for subset i, which is derived in turn by

𝑤𝑖 =
|𝑒𝑛𝑡𝑟𝑖𝑒𝑠|𝑖

|𝑒𝑛𝑡𝑟𝑖𝑒𝑠|
,

where |entries|i is the number of kept-entries

for the subset i, and |entries| is the number

of kept-entries in total for the assortment of

subsets in question. This average gives the

average traffic condition faced by a given

entry in one of the splits. However, to

account for outliers, the weighted standard

deviation is used as well. The weights are

used so to account for the uneven

distribution of kept entries across the

different subsets. This can be derived by

𝜎 = √∑ 𝑤𝑖 (𝑓𝑙𝑜𝑤𝑖 − 𝜇)
2 |𝑁|

𝑖 = 1 .

 The optimal sorting of subsets

renders a weighted average traffic flow of

0.349 vehicles per lane and second for the

training set and 0.351 for the evaluation set

while the weighted standard deviations came

in at 0.076 and 0.075. Both of metrics differ

by just over a thousandth of a vehicle per

lane and second. Though a higher weighted

standard deviation for the evaluation set

would be preferred, all other possibilities

compromise proportionality or similarity.

Training and Evaluating the Model

When training a neural network or any other

model with machine learning, the goal is to

calibrate the weights contained within the

model so that it produces the best-possible

output, where best-possible is usually

defined as being the most accurate. To

calibrate in such a way, a machine learning

environment measures the error of a given

guess and recalibrates the model’s weights

given this error. if its previous recalibration

resulted in a decrease in error, the training-

environment figures that it made a good

adjustment, and adjusts further based on this

feedback, and then has the model guesses on

another sample. This feedback-loop

continues until all samples have been

processed.

 This learning-process is defined by a

set of learning parameters. Because the

learning parameters will vary from model to

model, engineers often adjust these

parameters after a learning-cycle, or after all

the samples have been processed through.

Such parameters include the error-function,

the number of samples provided between

weight-calibration, or batch-size, and the

optimization function, which determines

how error measures will impact changes to

the model’s weights.

 Deo and Trivedi (2018) use the

open-source machine learning library

PyTorch for the entirety of their training and

evaluation. They measure error with both

root-mean-square error (RMSE) and

negative log-likelihood (NLL), feature 128

samples per batch, and use the optimization

algorithm ADAM to calibrate model

weights. They switch between the error

measures by training five cycles with RMSE

then three with NLL. Because the purpose of

this project is to evaluate theirs with

different data, all learning parameters are

kept except for the method of measurement

for NLL. In their code, Deo and Trivedi

inconsistently measure NLL (Deo and

Trivedi, 2018), so the negative log-loss

function is adjusted so it is both consistent

with the probability density function of a

bivariate normal distribution and consistent

throughout the code (Weisstein, 2002).

Results

Because of the adjustment to the calculation

for NLL, the comparison of errors from Deo

13

and Trivedi’s (2018) study and that of this

paper is kept strictly to the average RMSE

as presented in Table 1.

Table 1. Comparison between Deo and Trivedi’s (2018)

and this project’s evaluative root mean square errors

(RMSE) at each second across the five second prediction

horizon when using the NGSIM dataset; RMSE equates to

the average distance between the predicted and actual

positions at a given time along the prediction horizon.

Time (s) Deo & Trivedi,

NGSIM (m)

Hamalainen,

NGSIM (m)

1 0.62 0.59

2 1.29 1.29

3 2.13 2.14

4 3.20 3.18

5 4.52 4.48

The difference in error between Deo and

Trivedi’s (2018) and this study’s is minor

enough to deem the replica a fair

representation of their model. The

comparison between this study’s NGSIM

and highD results is expanded to include

maneuver accuracies as seen in Table 2.

Table 2. Comparison between the model’s evaluative root-

mean-square error (RMSE) when using the NGSIM and

highD dataset at each second across the five second

prediction horizon; RMSE equates to the average distance

between the predicted and actual positions at a given time

along the prediction horizon.

Error Measure Time (s) NGSIM highD

RMSE (m)

1 0.59 0.26

2 1.29 0.78

3 2.14 1.54

4 3.18 2.69

5 4.48 7.85

Lane Change Accuracy 97.96 % 97.94%

Braking Accuracy 89.29 % 99.94%

Discussion

Across the first four seconds of a vehicle’s

trajectory, the model and machine learning

algorithm perform better on the highD

dataset than on the NGSIM dataset, but the

model is exceedingly worse at predicting the

fifth second. Though the lane change

accuracies are similar, the model learns the

breaking tendencies of the highD data far

better than it learns those of the NGSIM

data.

 The differences between Deo and

Trivedi’s (2018) work and this project’s

NGSIM results should be addressed before

other discussion. Though the preprocessing

steps are modified for the highD dataset, the

only modification made for the NGSIM set

is that made to the negative log-likelihood

function. Such a change is a probable

explanation for the difference in RMSE: the

model learned from a more consistent error

function. However, the model samples from

the dataset randomly, the order of these

samples simply may have been somehow

better for the model.

As for the differences between this

paper’s model’s attempts with NGSIM and

highD, the exact explanations are less clear.

A likely candidate for the difference in

braking maneuver accuracy is the inaccurate

vehicle positions in the NGSIM data, whose

velocities and accelerations are so erratic

that they may not conform to a consistent

pattern as does those of the highD dataset.

However, the traffic patterns themselves

may also play a role in this difference.

Braking tendencies on an open road are

somewhat more logical than those in

congested conditions. In the former, when

approaching a slower lead vehicle, the driver

can either change lanes or slow down; when

the adjacent lanes are occupied in this

situation, braking becomes the only option.

Driving tendencies also may make it easier

for the model, too, since European drivers

14

are more likely to reserve the left lanes for

passing, making maneuvers generally more

predictable (Treiber and Kesting, 2009).

 This last point would be expected to

translate into an advantage for the lane

changing maneuvers as well. The fact that it

does not may be explained by the roadways

themselves: the NGSIM highways feature

some sort of on-ramp on the right side of

their roadways. The geometries are even

more similar when accounting for the fact

that while Interstate 80 does not feature an

off-ramp in its study area like US 101 does,

there is an off-ramp located just outside of

the former’s region. Such lends itself to a

clear pattern in lane changing for the right-

most lanes, giving NGSIM a sort of counter-

advantage to the highD dataset, where only

three of the subsets feature a sole on-ramp.

 As for the change in RMSE over

time, explanations are even less cle

ar and somewhat compete. On the one hand,

because of the greater diversity of speeds in

the highD data, one may expect the model to

have more difficulty learning its tendencies

than those of the NGSIM data, whose

velocities are more uniform. On the other

hand, the erroneousness of the latter may be

difficult to translate into any consistent and

definable pattern. Furthermore, dense traffic

conditions may simply be less stable: a

possibility that would explain both the errors

in the NGSIM data and the errors found in

the highD data’s congested subsets. The

preprocessing errors may be a cause, too,

since the neighboring traffic context is not

fully presented in the final NGSIM dataset.

Though the highD iterations win or

tie in almost all regards, their one

shortcoming – the great leap in error after

four seconds – is better understood through

a more detailed view. This can be seen in in

Figure 3, where the errors for every one-fifth

of a second are given and plotted alongside

the change in error at each step. At the

fourth second, the change in error steeply

increases, indicating a greater degree of

difficulty with predictions at that moment

than earlier. Though the variety of speeds

explains why the highD iterations fall short

of NGSIM after a certain speed, it may not

explain this sudden growth in error. If

vehicle A travels at 30 m/s and B at 40 from

the same starting position, their difference in

position after one second is less than it will

be after four, but such adjusts linearly. This

can be seen with the NGSIM change in

error, and with a greater degree of variety,

one would expect the same, just steeper.

Therefore, this increase goes beyond just the

greater diversity of traffic flow.

Figure 3. Comparison between the model’s evaluative root-

mean-square error (RMSE) when using the NGSIM and

highD dataset; depicted are comparisons of both the RMSE

and change in RMSE at each time-step (one fifth of a

second) across the prediction horizon of five seconds;

RMSE is best thought of as the average distance between

the predicted and actual positions at a given time-step along

the prediction horizon.

Conclusion

The results shown are by no means proof

that autonomous vehicles will have the

ability to avoid all possible accidents, but

they do show promise when considering the

limited samples provided. Furthermore,

because the model generally improved when

given less erroneous data, perhaps the

improvement can continue as more accurate

datasets become available.

15

It should be reminded that both the

NGSIM and highD datasets come from

aerial recordings: a far different perspective

than that of a vehicle. For an AV to view its

surrounding environment without any

outside-help, it would need to be through an

on-board sensor. Though this would

generate similar inputs, in a dense traffic

environment, they would be limited to just

the vehicles immediately surrounding it,

since they would block the view of other

vehicles. Because of the interdependence

that vehicles have on each other, omitting

those others would likely impact the model’s

performance in dense traffic scenarios.

A way around would be the use of an openly

available trajectory feed generated by

overhead cameras or by mandating that

vehicles communicate their positions using

inter-vehicle connectivity systems. The

latter would be especially promising as

vehicles could broadcast velocities,

accelerations, and signals in addition to the

positions themselves. However, such

methods raise concerns over privacy: should

drivers be required by law to broadcast their

positions or driving intentions to the public?

Many do exactly this when they use

navigation applications like Google maps,

but drivers are not required by law to do so.

Such dilemmas show that the deployment

effective autonomous vehicles may require

ethical compromises.

Above all things, this study should

highlight the need for more accurate and

abundant driving data. Hundreds and

thousands of studies have used the NGSIM

dataset in one way or another, and only a

handful do so to examine its flaws (Coifman

and Li, 2017). Without more accurate data,

human driving tendencies may forever be a

mystery. A lack of such knowledge may

slow the approach of fully autonomous

vehicles and their benefits or require

governments and other stakeholders to

segregate conventionally driven vehicles

from the autonomously driven ones.

Acknowledgements

Special thanks are owed to Saint Mary’s

University of Minnesota’s Dr. John Ebert,

and Greta Poser, who helped guide me

through both this capstone and the rest of

my academic postgraduate journey. Thanks

are also due to Nachiket Deo, who

responded promptly to my questions and

comments on his GitHub repository.

References

Coifman, B., and Li, L. 2017. A Critical

Evaluation of the Next Generation

Simulation (NGSIM) Vehicle Trajectory

Dataset. Transportation Research Part B,

105, 362-377. Retrieved April 17, 2020

from http://www2.ece.ohio-

state.edu/~coifman/documents/Coifman_a

nd_Li_2017.pdf.

Colyar, J., and Halkias, J. 2007a. US

Highway 101 Dataset. Federal Highway

Administration (FHWA), Tech. Rep.

FHWA-HRT07-030.

Colyar, J., and Halkias, J. 2007b. Interstate-

80 Dataset. Federal Highway

Administration (FHWA), Tech. Rep.

FHWA-HRT07-030.

Deo, N., and Trivedi, M. 2018.

Convolutional Social Pooling for Vehicle

Trajectory Prediction. Conference on

Computer Vision and Pattern Recognition

Workshops, 1468-1476. Retrieved June 13,

2020 from https://openaccess.thecvf.

com/content_cvpr_2018_workshops/paper

s/w29/Deo_Convolutional_Social_Pooling

_CVPR_2018_paper.pdf and from

https://github.com/nachiket92/conv-social-

pooling.

Hall, F. 1992. Traffic Stream

Characteristics, 7. Retrieved November

20, 2020 from https://www.fhwa.dot.gov

16

/publications/research/operations/tft/chap2

.pdf.

National Center for Statistics and Analysis

(NCSA). 2017. 2016 Fatal Motor Vehicle

Crashes: Overview. Traffic Safety Facts

Research Note. Report No. DOT HS 812

456, Washington, DC: National Highway

Traffic Safety Administration. Retrieved

August 20, 2020 from https://crashstats.

nhtsa.dot.gov/Api/Public/ViewPublication

/812456.

National Center for Statistics and Analysis

(NCSA). 2018. Summary of motor vehicle

crashes: 2016 data. Traffic Safety Facts.

Report No. DOT HS 812 580, Washington,

DC: National Highway Traffic Safety

Administration. Retrieved August 20,

2020 from https://www.nhtsa.gov/press-

releases/usdot-releases-2016-fatal-traffic-

crash-data.

Punzo, V., Borzacchiello, M., and Ciuffo, B.

2011. On the Assessment of Vehicle

Trajectory Data Accuracy and Application

to the Next Generation SIMulation

(NGSIM) Program Data. Transportation

Research Part C, 19(6), 1243-1262.

Krajewski, R., Bock, J., Kloeker, L., and

Eckstein, L. 2018. The highD Dataset: A

Drone Dataset of Naturalistic Vehicle

Trajectories on German Highways for

Validation of Highly Automated Driving

Systems. 2018 21st International

Conference on Intelligent Transportation

Systems (ITSC), Maui, HI, 2118-2125.

Retrieved April 22, 2020 from

https://axriv.org/abs/ 1810.05642.

Treiber M., and Kesting, A. 2009. Modeling

Lane-Changing Decisions with MOBIL,

Traffic and Granular Flow. Springer,

Berlin, Heidelberg. Retrieved September

24, 2019 from https://www.research

gate.net/publication/227128200_Modeling

_lane-changing_decisions_with_MOBIL.

Weisstein, E. 2002. Bivariate Normal

Distribution. MathWorld--A Wolfram

Web Resource. Retrieved August 29, 2020

from https://mathworld.wolfram.

com/BivariateNormalDistribution.html.

https://mathworld.wolfram.com/

17

Appendix A. NGSIM Dataset Location Information. Vehicles represents the total number of unique vehicles

featured, and entries represents the number of unique vehicle positions.

Location Date & Time Lanes Vehicles Entries

I-80 Oakland, CA 04/13/2005 16:00 - 16:15 6 + on-ramp 2,052 1,262,678

I-80 Oakland, CA 04/13/2005 17:00 - 17:15 6 + on-ramp 1,836 1,549,918

I-80 Oakland, CA 04/13/2005 17:15 - 17:30 6 + on-ramp 1,790 1,753,791

US 101 Los Angeles, CA 06/15/2005 07:50 - 08:05 5 + auxiliary on-off-ramp 2,169 1,180,598

US 101 Los Angeles, CA 06/15/2005 08:05 - 08:20 5 + auxiliary on-off-ramp 2,017 1,403,095

US 101 Los Angeles, CA 06/15/2005 08:20 - 08:35 5 + auxiliary on-off-ramp 1,915 1,515,240

18

Appendix B. HighD Dataset Location Information. All data from the highlighted (yellow) subsets were omitted due

to an abundance of backward trajectories.

Location 1 (Bundesbahn 4) Subsets

ID Day of Week, Month Year (Time) L: 3 lanes R: 3 lanes

Vehicles Entries Vehicles Entries

1 Fri., 09 2017 (08:21 - 08:30) 466 137,811 389 119,220

2 Fri., 09 2017 (08:37 - 08:55) 823 245,296 797 236,956

3 Fri., 09 2017 (09:24 - 09:42) 723 219,985 697 216,649

4 Fri., 09 2017 (10:36 - 10:46) 413 120,487 443 137,825

Location 2 (Bundesbahn 61) Subsets

ID Day of Week, Month Year (Time) L: 2 lanes R: 2 lanes

Vehicles Entries Vehicles Entries

5 Fri., 09 2017 (08:49 - 09:01) 424 143,807 498 167,336

6 Fri., 09 2017 (09:11 - 09:27) 418 141,663 580 196,389

7 Fri., 09 2017 (09:35 - 09:50) 404 131,988 573 191,662

8 Fri., 09 2017 (10:07 - 10:17) 249 77,615 358 113,280

9 Fri., 09 2017 (10:24 - 10:40) 449 149,464 550 178,830

10 Fri., 09 2017 (10:47 - 10:54) 577 197,332 622 208,307

11 Fri., 09 2017 (11:10 - 11:27) 484 157,428 593 196,002

12 Fri., 09 2017 (11:44 - 11:53) 289 100,028 400 136,176

13 Fri., 09 2017 (12:06 - 12:22) 726 267,060 588 200,005

14 Fri., 09 2017 (12:27 - 12:43) 683 230,997 614 210,015

Location 3 (Bundesbahn 4) Subsets

ID Day of Week, Month Year (Time) L: 3 lanes & on-ramp R: 3 lanes

Vehicles Entries Vehicles Entries

15 Wed., 07 2018 (09:15 - 09:21) 373 117,738 341 115,501

16 Wed., 07 2018 (09:23 - 09:31) 376 119,904 346 111,316

17 Wed., 07 2018 (09:37 - 09:53) 733 240,571 734 259,923

19

Location 4 (Bundesbahn 61) Subsets

ID Day of Week, Month Year (Time) L: 3 lanes R: 3 lanes

Vehicles Entries Vehicles Entries

18 Thu., 09 2017 (16:18 - 16:28) 1,023 399,790 753 258,981

19 Thu., 09 2017 (17:21 - 17:36) 1,451 683,865 1,277 449,016

20 Thu., 09 2017 (18:04 - 18:22) 1,632 607,596 1,317 437,394

21 Thu., 09 2017 (18:28 - 10:46) 1,573 557,865 1,271 423,744

22 Mon., 10 2017 (08:55 - 09:15) 1,232 1,306,832 1,618 712,920

23 Mon., 10 2017 (09:20 - 09:39) 1,123 819,787 1,585 766,244

24 Mon., 10 2017 (09:46 - 10:06) 1,131 390,694 1,468 561,946

25 Mon., 10 2017 (10:12- 10:33) 1,116 383,280 1,256 435,371

26 Mon., 10 2017 (10:39 - 10:58) 1,014 352,317 1,138 404,511

27 Mon., 10 2017 (11:03 - 11:23) 1,178 421,427 1,301 461,603

28 Mon., 10 2017 (11:28 - 11:47) 1,038 364,327 1,216 444,564

29 Mon., 10 2017 (12:20 - 12:33) 685 237,673 725 252,863

30 Mon., 10 2017 (12:41 - 12:59) 1,062 379,386 1,190 423,048

31 Mon., 10 2017 (13:34 - 13:48) 862 310,693 911 325,468

32 Wed., 10 2017 (11:26 - 11:44) 984 340,423 1,008 351,042

33 Wed., 10 2017 (11:09 - 11:30) 1,237 490,654 1,306 461,482

34 Wed., 10 2017 (11:55 - 12:13) 1,011 358,283 1,077 349,711

35 Wed., 10 2017 (12:20 - 12:40) 1,160 406,202 1,220 425,244

36 Mon., 10 2017 (09:04 - 09:24) 1,191 391,015 1,208 405,144

37 Mon., 10 2017 (09:30 - 09:50) 1,272 420,737 1,091 357,923

38 Mon., 10 2017 (10:41 - 11:00) 1,306 443,153 1,138 379,700

39 Mon., 10 2017 (11:05 - 11:23) 1,194 405,917 1,077 349,711

40 Mon., 10 2017 (11:31 - 11:48) 1,312 440,163 1,237 411,762

41 Mon., 10 2017 (11:54 - 12:14) 1,261 425,093 1,118 390,600

42 Mon., 10 2017 (12:23 - 12:41) 1,319 436,460 1,502 654,508

43 Wed., 11 2017 (08:47 - 09:07) 1,253 441,615 1,209 413,570

44 Wed., 11 2017 (09:15 - 09:37) 1,280 448,130 1,264 421,874

20

45 Wed., 11 2017 (09:38 - 09:57) 1,033 351,733 1,063 356,664

46 Wed., 11 2017 (10:02 - 10:19) 1,141 389,865 1,093 365,876

47 Wed., 11 2017 (11:38 - 11:57) 1,163 390,570 1,121 378,828

48 Wed., 11 2017 (12:05 - 12:23) 1,121 375,327 1,000 337,049

49 Wed., 11 2017 (12:30 - 12:47) 1,235 427,657 1,207 411,374

50 Wed., 11 2017 (13:15 - 13:32) 1,096 360,541 1,247 413,932

51 Thu., 01 2018 (09:16 - 09:34) 1,050 352,439 1,140 384,900

52 Thu., 01 2018 (09:39 - 09:57) 822 276,301 973 333,718

53 Thu., 01 2018 (10:04 - 10:20) 953 320,787 966 319,183

54 Thu., 01 2018 (10:26 - 10:44) 373 117,738 341 115,501

Location 5 (Bundesbahn 61) Subsets

ID Day of Week, Month Year (Time) L: 3 lanes R: 3 lanes

Vehicles Entries Vehicles Entries

55 Thu., 09 2017 (11:16 - 11:34) 575 197,312 588 193,375

56 Thu., 09 2017 (11:41 - 12:00) 599 203,652 617 198,886

57 Thu., 09 2017 (12:06 - 12:26) 670 229,536 698 226,287

Location 6 (Bundesbahn 46) Subsets

ID Day of Week, Month Year (Time) L: 2 lanes R: 2 lanes

Vehicles Entries Vehicles Entries

58 Tue., 09 2017 (08:38 - 08:53) 594 199483 453 149267

59 Tue., 09 2017 (09:04 - 09:21) 689 237723 424 140392

60 Tue., 09 2017 (09:54 - 09:11) 497 163884 417 139604

21

Appendix C. Velocity Distributions for NGSIM and highD. These tables show the minimum and maximum

velocities (MIN and MAX) along with the 2.5th, 50th, and 97.5th percentile speeds as well as the average (AVG) and

standard deviation (STD). The velocity distributions are indicative of the type of traffic scenarios featured in each

subset, with the highD data being far more diverse than the NGSIM data. All data from the highlighted (yellow)

subsets were omitted due to an abundance of backward trajectories.

NGSIM VELOCITY DISTRIBUTIONS

ID MIN 2.5% 50% 97.5% MAX AVG STD

I80A 0.0 0.89 7.48 18.48 29.05 7.72 4.06

I80B 0.0 0.0 4.88 15.24 29.05 5.62 3.89

I80C 0.0 0.0 4.23 13.74 29.05 4.83 3.62

US101A 0.0 1.33 11.96 19.56 29.05 11.43 4.53

US101B 0.0 0.22 9.15 15.91 29.05 8.94 4.09

US101C 0.0 0.49 8.03 14.68 29.05 7.84 3.67

highD VELOCITY DISTRIBUTIONS

ID MIN 2.5% 50% 97.5% MAX AVG STD

L1 21.54 23.29 33.79 44.6 49.24 33.1 6.21

R1 21.83 23.46 33.73 47.6 61.17 33.22 7.09

L2 21.03 23.43 33.67 46.81 57.65 33.49 6.74

R2 21.53 23.33 33.76 48.13 61.72 33.55 7.39

L3 21.17 23.05 33.18 47.36 56.37 32.93 7.17

R3 17.25 22.99 32.23 45.89 68.28 32.21 6.8z

L4 21.89 23.4 34.25 50.27 59.45 34.08 7.55

R4 21.6 23.4 32.91 46.25 58.64 32.53 6.56

L5 19.53 22.53 28.76 40.99 54.1 29.54 5.57

R5 21.08 22.54 29.6 39.74 44.62 29.82 5.07

L6 19.62 22.39 29.22 42.3 54.23 30.03 6.06

R6 20.73 22.28 29.28 42.46 56.4 29.92 5.83

L7 19.66 22.05 31.03 43.26 64.0 30.6 6.23

R7 19.11 22.54 30.26 40.81 50.09 30.15 5.11

L8 21.62 22.91 31.95 45.87 54.75 31.92 6.63

R8 19.99 22.85 32.09 45.33 61.07 31.86 5.76

L9 20.22 22.18 30.38 42.13 50.6 30.35 5.70

R9 20.67 22.92 31.99 41.03 46.75 31.41 5.22

L10 19.75 22.56 29.43 39.92 50.2 29.66 5.20

R10 19.26 22.29 30.51 40.55 51.54 30.16 5.16

L11 20.86 22.57 31.14 42.74 52.92 30.84 5.83

R11 20.15 22.98 31.05 40.64 55.11 30.73 5.03

L12 19.69 21.31 27.98 40.9 50.31 28.96 5.48

R12 21.46 22.77 29.45 38.95 46.17 29.34 4.41

L13 16.66 20.39 26.32 36.68 46.66 27.15 4.40

R13 20.98 22.63 30.26 39.74 48.9 30.05 4.82

L14 20.68 22.13 29.38 40.74 47.64 29.62 5.23

R14 19.77 22.46 29.33 40.58 53.92 29.72 5.19

L15 12.83 20.81 31.22 41.95 55.29 30.97 5.93

R15 -1.87 19.87 28.08 39.15 52.0 28.08 5.46

L16 14.76 21.77 31.41 42.35 53.47 31.12 5.90

R16 12.55 20.32 29.64 42.91 61.28 29.83 6.37

L17 11.48 21.28 31.01 42.01 51.43 30.51 5.96

R17 16.4 18.84 28.56 40.14 62.71 28.31 5.90

L18 17.41 20.05 25.42 32.54 40.65 25.6 3.10

R18 19.37 22.42 30.06 36.7 40.4 29.46 4.17

L19 4.07 12.03 20.88 30.67 36.57 21.41 4.53

R19 19.1 22.31 28.65 36.83 42.25 28.71 4.05

22

L20 17.49 21.28 26.61 35.77 41.86 27.15 4.02

R20 19.45 22.82 31.11 38.21 43.8 30.53 4.32

L21 19.54 21.91 28.11 36.81 42.16 28.42 4.19

R21 16.0 22.5 30.78 38.54 44.59 30.31 4.43

L22 -0.43 1.98 9.62 15.95 20.4 9.23 3.87

R22 2.73 6.97 23.4 29.64 34.43 22.45 5.20

L23 -2.51 3.16 12.51 31.89 43.49 13.48 6.79

R23 5.37 13.58 21.26 26.76 33.16 20.73 3.523

L24 16.73 21.26 30.14 38.11 54.25 29.44 4.93

R24 11.79 18.85 25.14 35.81 41.88 26.27 4.77

L25 17.03 21.78 30.5 39.0 50.14 29.62 5.26

R25 18.62 22.17 29.93 37.19 45.33 29.32 4.33

L26 14.96 21.78 29.95 37.74 46.09 29.27 4.67

R26 17.39 21.02 29.24 36.94 49.31 28.66 4.69

L27 18.58 21.38 28.75 36.63 43.95 28.44 4.57

R27 16.98 21.52 29.07 36.29 44.04 28.64 4.28

L28 19.24 21.22 29.82 37.63 45.34 29.09 4.95

R28 16.66 20.99 27.88 35.85 45.07 27.87 4.41

L29 18.88 21.88 29.7 37.87 44.64 29.0 4.79

R29 19.05 21.88 29.88 36.84 51.63 29.11 4.56

L30 18.38 21.41 28.85 36.81 47.61 28.42 4.73

R30 17.84 21.49 28.94 36.58 42.7 28.52 4.35

L31 19.29 21.73 28.62 35.92 42.11 28.19 4.38

R31 14.5 21.28 28.85 35.65 42.08 28.31 4.21

L32 11.51 21.93 30.03 38.17 51.73 29.38 4.93

R32 11.29 22.1 29.4 37.71 43.4 29.1 4.64

L33 -0.1 5.27 25.53 35.7 42.08 25.26 7.27

R33 17.28 21.97 29.24 36.92 42.32 28.75 4.43

L34 18.99 21.71 28.58 36.71 45.0 28.47 4.54

R34 18.53 21.83 30.09 39.21 53.1 29.44 5.04

L35 18.61 21.4 29.57 37.38 46.17 28.9 4.88

R35 20.27 22.36 29.76 37.83 45.29 29.18 4.73

L36 16.49 21.7 30.48 39.53 49.08 29.96 5.135

R36 18.58 22.23 31.48 40.32 52.27 30.8 5.09

L37 17.63 22.22 31.44 39.62 50.64 30.8 5.00

R37 19.81 22.22 30.34 39.35 56.64 30.19 4.82

L38 16.86 21.77 31.12 38.88 57.08 30.45 4.99

R38 17.95 22.77 31.7 39.24 50.2 30.94 4.67

L39 18.23 22.0 30.24 38.01 45.47 29.79 4.62

R39 16.04 22.65 30.87 38.71 46.93 30.33 4.61

L40 15.32 21.62 30.34 38.46 48.58 29.87 4.87

R40 20.89 23.05 31.94 40.09 51.09 31.36 4.78

L41 19.39 22.41 30.56 38.73 56.71 30.08 4.82

R41 16.3 22.85 31.02 39.5 46.66 30.49 4.84

L42 19.95 22.13 30.48 38.28 47.49 30.01 4.67

R42 20.67 22.71 31.46 39.83 46.95 30.81 4.88

L43 19.62 22.53 30.99 38.67 46.41 30.44 4.79

R43 2.28 6.56 24.08 35.36 44.99 22.95 6.96

L44 17.99 21.09 28.45 37.6 45.59 28.69 4.63

R44 17.03 22.18 29.69 38.21 43.48 29.66 4.57

L45 17.47 21.49 29.43 37.2 45.19 29.09 4.53

R45 20.35 23.07 30.86 38.12 46.72 30.27 4.54

L46 19.1 22.1 30.15 38.94 45.73 29.83 4.94

R46 19.0 22.83 30.7 38.03 43.85 30.12 4.53

L47 20.14 22.44 29.43 39.18 57.3 29.6 5.07

R47 20.69 23.01 30.8 39.06 46.02 30.25 4.74

L48 20.41 22.89 31.01 39.12 45.33 30.24 4.99

R48 20.01 22.7 30.07 38.76 49.1 29.91 4.77

L49 20.43 22.59 30.41 38.99 48.23 30.04 4.98

R49 18.11 22.7 30.3 38.49 45.97 30.0 4.75

L50 19.15 22.59 29.52 38.18 46.86 29.45 4.51

23

R50 21.01 23.27 30.27 38.3 45.19 29.87 4.54

L51 19.94 22.5 31.73 39.87 55.73 30.82 5.23

R51 20.05 23.08 31.28 38.63 46.94 30.57 4.66

L52 19.73 22.23 30.63 39.96 48.23 30.17 5.15

R52 19.62 22.8 30.71 38.16 51.32 30.13 4.56

L53 20.84 22.32 30.56 40.26 53.15 30.05 5.33

R53 19.33 22.21 29.95 38.24 46.87 29.61 4.72

L54 19.93 22.48 31.04 39.65 47.59 30.17 5.20

R54 21.28 23.09 31.42 39.7 55.3 30.63 5.10

L55 20.7 22.2 28.32 41.12 49.11 29.35 5.66

R55 20.35 22.98 31.14 40.43 49.18 30.74 5.59

L56 20.08 22.55 28.5 40.33 51.17 29.49 5.54

R56 21.28 23.14 31.58 41.72 57.97 31.21 5.99

L57 20.33 22.51 28.36 40.5 51.32 29.53 5.53

R57 22.01 23.3 31.82 41.82 49.76 31.29 5.80

L58 21.17 22.4 30.11 40.48 48.87 29.83 5.18

R58 20.13 21.36 30.87 42.18 50.26 30.49 6.27

L59 17.22 21.7 29.52 39.23 51.82 29.04 5.09

R59 19.28 20.71 30.73 44.47 62.93 30.45 6.78

L60 20.67 22.41 30.89 44.11 50.98 30.57 6.20

R60 20.93 22.07 30.78 43.85 65.2 30.27 6.59

24

Appendix D. NGSIM Error Distribution. This shows the prevalence of errors in each of the six subsets. Negative

distance headway means a vehicle overtook its leading vehicle’s position (an indication of a crash or, more likely,

erroneous positioning). Any acceleration over 3.05 m/s2 is considered abnormally high and therefore counted as a

high acceleration. Low, constant velocities count as the number of vehicles featuring a non-zero velocity at or below

1.52 m/s coupled with an acceleration of zero.

Subset

Negative Distance Headway

High Acceleration

(Entries)

Low, Constant

Velocity

(Vehicles) Vehicles Entries

I-80A 205 (9.990%) 3,474 (0.275%) 105,293 (8.340%) 8 (0.390%)

I-80B 319 (17.357%) 10,632 (0.686%) 69,244 (4.468%) 93 (5.065%)

I-80C 353 (19.721%) 11,650 (0.664%) 78,189 (4.458%) 194 (10.838%)

US-101A 120 (5.533%) 1,912 (0.162%) 70,785 (5.996%) 13 (0.599%)

US-101B 139 (6.891%) 1,800 (0.128%) 56,347 (4.016%) 37 (1.834%)

US-101C 102 (5.326%) 1,968 (0.130%) 60,783 (4.011%) 44 (2.300%)

