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Abstract 

 

The use of neural-networks and machine learning to create and train trajectory prediction models 

has shown promising results for automated driving technologies. In this paper, the results of such 

a model are validated with improved data and preprocessing techniques. The model explores Deo 

and Trivedi’s (2018) Convolutional Social Pooling model. The original model is recreated, 

trained, and evaluated with the original NGSIM dataset, then trained and evaluated with the 

newer highD dataset. Results are measured and compared with root-mean-squared error. The 

cleaner and more processed highD dataset shows a lower average error, but results are 

inconclusive as to why this is so. Discussion of these results illuminates both future possibilities 

and concerns in the fields of trajectory prediction and automated vehicle technology. 

 

Introduction 

 

In 2016, the United States lost over 37,000 

lives to traffic accidents on highways 

(National Center for Statistics and 

Analysis, 2018), and between 94 and 96 

percent of those accidents were due to 

human error (NCSA, 2017). These statistics 

are some of the main motivators for 

autonomous vehicles, which eliminate 

human error altogether. Before 

governments allow fully autonomous 

vehicles (AVs) to be used on a mass scale, 

they must prove their worth by showing the 

ability to avoid collisions and make roads 

safer. A sensible tactic would be to predict 

dangerous scenarios before they occur. In 

the long-term, predicting may be 

unnecessary since AVs can signal 

intentions to their counterparts and 

coordinate. In the near term, however, such 

will only be partially possible due to the 

presence of conventionally driven vehicles, 

whose movements are dictated by human 

motor skills, cognition, and distractibility. 

AVs able to predict CVs movements will 

therefore be most prized not only for their 

ability to avoid dangerous situations, which 

would have external benefits to other road 

users, but also for their ability to drive 

efficiently by avoiding potential slowdowns 

both locally - in a particular lane - and 

more globally - on a particular road. 

These prospects have generated a 

recent boon in the field of vehicle trajectory 

prediction research, particularly via the use 

of machine learning on neural networks. 

One such study is that of Deo and Trivedi 

(2018). Though the two are not the first to 

leverage machine learning to predict vehicle 

movement, their study is novel in that it 

combines both recent travel patterns, 

specifically the last three seconds of motion, 

and traffic context to predict the next five 

seconds of a vehicle’s trajectory. Their 

model does so relatively accurately, 

outperforming all other models at the time 

of publication (Deo and Trivedi, 2018).  
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The Trajectory Prediction Model: Using 

Neural Networks to Predict Vehicle Motion 

 

Deo and Trivedi’s (2018) model is a neural 

network, or a series of interconnected 

models where data is passed from model to 

model until a final output is produced. The 

number of models featured varies from 

network to network: some feature a one or 

two while others feature dozens. The exact 

design of the network depends heavily on 

the ends it serves, and since trajectory 

prediction is a type of sequence prediction, 

numerous models exist for such an end. One 

of such models is that of a specific type of 

recurrent neural network called long short-

term memory (LSTM), which uses the 

relationship between elements in a sequence 

to predict an output. Since vehicle motion is 

a time-series of interdependent positions, an 

LSTM fits the purpose of trajectory 

prediction quite well. 

Another critical component of their 

network is the use of convolutional social 

pooling to provide a proper traffic context 

for the prediction of future trajectories. 

Since the trajectory history of neighboring 

vehicles are also included as inputs, they, 

too, are processed through an LSTM, but for 

the model to decipher the meaning of these 

outputs, Deo and Trivedi (2018) process 

them through a series of layers they call 

convolutional social pooling. These layers 

generalize the meaning of the various spatial 

configurations of neighboring vehicles so 

that when the model is presented with a 

configuration not yet witnessed, the model 

will be able to relate it to patterns seen 

previously.  

The final feature of note in their 

model is the incorporation of encoded 

driving maneuvers, or well-defined, logical 

adjustments to a driver’s path. Two of such 

adjustments include lane changes and 

breaking, which are not only greatly 

impactful on a vehicle’s trajectory, but are 

also greatly dependent upon the traffic 

scenario in which a driver finds her or 

himself in. These two aspects make 

maneuvers particularly useful to a model 

that uses neighboring trajectories to predict a 

vehicle’s future path, since the maneuver 

itself can be predicted and then incorporated 

into the prediction of the exact trajectory. 

 These aspects together combine to 

create an estimation of a vehicle’s future 

path given the conditions of its former path 

and those of its neighboring vehicles. A 

more fully fleshed outline of their model can 

be found in their 2018 paper, 

“Convolutional Social Pooling for Vehicle 

Trajectory Prediction,” but for the most 

detailed description, the code for their work 

is posted on GitHub (Deo and Trivedi, 

2018). 

Deo and Trivedi’s (2018) model has 

since been built upon by numerous 

published studies; however, the data in that 

model did not contain vehicle trajectory 

data. Because of such, the two researchers 

developed their model with the Federal 

Highway Administration’s (FHWA) Next 

Generation Simulation dataset (NGSIM), 

which tracks the motion of thousands of 

vehicles from four locations, two of which 

are on US freeways. The data from those 

two freeways, Oakland’s Interstate 80 and 

Los Angeles’s US 101, were the two 

collections used by Deo and Trivedi (2018). 

The NGSIM dataset is one of the only 

massive trajectory datasets available, yet it 

is riddled with anomalies.  

 

Original Model Data Challenges 

 

Issues with the NGSIM dataset were first 

pointed out by a few studies in 2008 that 

found noise in the vehicle motion data, yet it 

was not until 2011 that an exhaustive search 

pointed out flaws that were beyond the 

scope of correction (Coifman and Li, 2017). 

In that year, one study noted the irregularity 
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of not only the velocities and accelerations 

but also of the relative positioning between 

vehicles (Punzo, Borzacchiello, and Ciuffo, 

2011). Most notably, the study found that 

numerous vehicles overtook the position of 

their leading vehicles: a clear indication of a 

collision. Though it is possible for there to 

be a collision or two, the data collected from 

Interstate 80 alone features 747 vehicle 

tracks like this.  

 Along with the collision issue, they 

point out two other pervasive issues: 

abnormally high acceleration values over 

3.05 m/s2 and abnormally steady yet slow 

speeds. The latter can be found by looking 

for acceleration values of zero, which 

indicate constant velocity. This can be 

expected if vehicles are stopped, but these 

acceleration values are found at non-zero 

speeds. Constant speeds can also be found in 

free-flow traffic, especially with the aid of 

adaptive cruise control, but these speeds are 

at or below 1.52 m/s which is almost never 

seen (Coifman and Li, 2017). They explain 

these abnormalities as being due to the 

nature of NGSIM’s data collection 

procedure, which utilizes multiple cameras 

to record vehicle motion then imposes an 

automated tracking algorithm to extract the 

trajectories at a time when such automation 

was in its infancy. Coifman and Li then 

show that the errors can only be repaired by 

re-extracting vehicle positions from the 

original recordings since the positions 

themselves are erroneous. The two did such 

but only for one of the six freeway subsets 

and only from one of the multiple cameras 

used in the original data collection. 

 

A Possible Solution 

 

Past studies suggesting the NGSIM dataset 

is unreliable have not deterred researchers 

from using the data. These errors may 

introduce question into models since the 

efficacy of those models and applications 

are proven using samples outside the scope 

of reality. Fortunately, new vehicle 

trajectory data - the highD dataset - was 

released in 2018 and could provide a reliable 

way to evaluate models like Deo and 

Trivedi’s (2018). Derived from German 

freeway traffic, the highD dataset features 

all the elements of the NGSIM dataset and 

may hold several advantages over the older 

collection. Its engineers report a positional 

accuracy within 10 centimeters: an 

improvement that may be due to the 

advances in digital image processing since 

2005 or because the vehicles are recorded 

from a single camera flying overhead 

instead of multiple cameras recorded at an 

angle (Krajewski, Bock, Kloeker, and 

Eckstein, 2018). 

 The arrival of the highD dataset 

presents an opportunity to validate Deo and 

Trivedi’s (2018) model by training and 

evaluating it with improved data. Because 

the highD and NGSIM datasets differ in 

important ways, the two’s methods, scopes, 

and general features will be compared, as 

well as their traffic properties and 

anomalies. This is followed by a detailed 

outline of the preprocessing steps Deo and 

Trivedi followed to prepare the data along 

with rationale for the changes made to both 

improve data integrity and address the new 

dataset’s differences from the old. Finally, 

an overview of the training and evaluating 

processes is presented coupled with the 

reasoning for the minor adjustments made to 

them followed by a discussion of the results. 

 

Methods 

 

Dataset Comparison 

 

Both the NGSIM and highD data come from 

video recordings taken on days with clear 

visibility and no precipitation. Both come in 

the form of comma separated value tables  
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(CSVs) where each row corresponds to a 

specific vehicle at a specific frame in the 

recording. The CSVs are made up of entries 

that each correspond to a vehicle-recording 

frame pair. They provide local vehicle 

positions in the form of an x-value, or the 

distance from the starting-line of the study 

zone, and a y-value, or the distance from the 

boundary on one of the sides of the road, as 

well as the vehicle’s lane, velocity, and 

acceleration at that frame.  

The NGSIM collection comes from 

six different CSVs: the three that come from 

Oakland’s Interstate 80 (westbound) were 

gathered on April 13, 2005 for three 15-

minute periods in the afternoon while the 

three that came from Los Angeles’s US 

Highway 101 (southbound) were collected 

on June 15, 2005 for three 15-minute 

periods in the morning. Synchronized video 

cameras perched atop 30-plus story 

buildings adjacent to the freeways, recorded 

traffic across Interstate 80’s six main lanes 

and on-ramp and US 101’s five main lanes 

and on-off-auxiliary-lane (Figure 1). 

Figure 1. Schematic diagrams of NGSIM’s study sites on 

Oakland’s Interstate 80 (top) and Los Angeles’s US 

Highway 101 (bottom). 

 

Software created by Cambridge 

Systems extracted the trajectories from the 

video, providing positions every one-tenth 

of a second. Though the exact resolution of 

the cameras is unknown, the researchers 

down sampled the resolution to 640 x 480 

pixels (Coifman and Li, 2017). These six 

subsets combine to provide the trajectories 

of 11,779 vehicles across 8,665,320 total 

positions. The distribution of these 

trajectories across the subsets along with the 

recording times can be examined in 

Appendix A.  

While the NGSIM data are spread 

across six subsets, the highD data come 

from 60 different subsets, with each coming 

from one of six different 420-meter freeway 

sections near Cologne, Germany. The data 

features vehicles traveling in both directions 

of traffic. The time-duration of these subsets 

vary from six and half minutes to just over 

20 minutes, with the majority spanning 

around 18 minutes. A drone (DJI Phantom 4 

Pro Plus) flying 100 meters over each 

roadway recorded traffic in 4096 x 2160-

pixel resolution, collecting vehicle positions 

every 25th of a second. An adapted U-Net 

neural network architecture classified each 

pixel as belonging to a vehicle or the 

background. A tracking algorithm extracted 

the vehicle trajectories by comparing the 

image classifications between frames and 

the objects’ relative distances. After 

smoothing positions and speeds the final 

highD data features a total of 110,516 

vehicles across 39,725,708 positions. When 

down-sampled to the NGSIM frame rate of 

one-tenth of a second, the number of 

positions totals to 15,890,283 entries. The 

exact distribution of these trajectories can be 

examined in Appendix B. 

 

Comparison of Traffic Patterns 

 

One thing that may affect the model’s 

performance aside from the accuracy of the 

data is the difference in traffic patterns 

between the two collections. The fact sheets 

on the NGSIM dataset (Colyar and Halkais, 

2007a; 2007b) posit the time periods 

featured represent the transition between 

uncongested and congested periods, but the 

dataset itself can reveal exactly what traffic 

was like. 
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 The distribution of vehicle velocities 

is a good indicator for the purposes of this 

study for two reasons. For one, roadways 

with sufficiently high congestion will have a 

breakdown in the flow of traffic due to 

vehicles slowing down, but the distribution 

itself may be more important than the exact 

cause of such speeds because it shows the 

variety of trajectories that the model will be 

exposed to. Though an average alone may 

be misleading due to outlier-skewing, when 

supplemented by the median, range, and 

standard deviation, velocity can give good 

insight into the types of trajectories featured 

in each dataset. 

 Since the highD dataset has a 

specificity of 25 positions per second 

compared to NGSIM’s 10, the velocities are 

averaged by the second. Arrays of velocities 

are created using Python and the open-

source data processing package NumPy. 

 The resulting velocities somewhat 

confirm NGSIM’s claims, with a low 

average velocity of 7.50 m/s (meters per 

second) typical of congested conditions, and 

a maximum velocity of 28.99 m/s indicating 

that at least some vehicles drove at free-flow 

speeds. However, the percentiles show that 

most of the vehicles travel at a slow 

velocity. The median velocity for all the 

NGSIM velocities is 7.31 m/s. With a 

standard deviation of 4.48 m/s, and with 

95% of the velocities falling between zero 

and 17.23 m/s, the majority of the NGSIM 

data can be deemed as coming from some 

form of congestion. 

While the NGSIM data is primarily 

concentrated during periods of congestion, 

the velocities found in the highD vary wildly 

by comparison. With an average of 28.14 

and a median of 28.73 m/s (about 63 and 64 

mi/h), the highD velocities are much higher. 

Though the standard deviation (6.91 m/s or 

about 15.50 mi/h) is greater than NGSIM’s, 

it is not fully indicative of the highD’s 

variance: 95 percent of the velocities are 

found between 9.63 and 39.38 m/s (22 - 88 

mi/h), a range far greater than NGSIM’s. 

This can be seen most clearly in Figure 2, 

which compares the ranges of velocities. 

The breakdown by subset can be seen in 

Appendix C. 

 

 
Figure 2. The distributions of speeds found in the NGSIM 

and highD datasets, with the latter displaying greater 

diversity than the former. 

 

Comparison of Errors 

 

This study seeks to validate Coifman and 

Li’s (2017) findings through conducting an 

error search on both the NGSIM and the 

highD dataset. While the former features a 

distance headway (DHW) for each entry, it 

is measured by the distance between the 

front of the vehicle and the front of its 

leading vehicle instead of the leading 

vehicle’s back. They are therefore modified 

by subtracting the length of each lead-

vehicle from the DHW originally provided. 

As for the velocities and accelerations, the 

originals may be a product of how they were 

measured rather than a product of the 

changes in positions, so to validate 

consistency, these, too, are calculated via 
 

𝑣𝑖 ∶=  
𝑥𝑖 + 1 − 𝑥𝑖 − 1

𝑡𝑖 + 1 − 𝑡𝑖 − 1
, and 

 

𝑎𝑖 ∶=  
𝑣𝑖 + 1 − 𝑣𝑖 − 1

𝑡𝑖 + 1 − 𝑡𝑖 − 1
 , 
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where xi + 1 and xi - 1 are the positions before 

and after the frame, t, of entry i. These 

measures differ very little to not at all from 

the originals, showing that they are 

consistent with the change in positions and 

are therefore representative of the 

trajectories themselves. 

 Across all subsets, 10.51% of 

vehicles feature negative distance headways. 

This is normally an indication of a vehicle 

crash, and for 10% of these vehicles to have 

an accident would be a newsworthy incident 

and one the FHWA would most likely note 

if true. Nearly all vehicles accelerate over 

3.05 m/s2 at one position or another. 3.30% 

of vehicles feature low, constant velocities, 

which are indicated by an acceleration of 

zero coupled with a velocity at or below 

1.52 m/s. The exact distribution of these 

errors can be examined in Appendix D. 

In addition to the erroneous DHWs, 

velocities, and accelerations, the earliest 

vehicles featured in each subset do not have 

a lead-vehicle. This is a problem because the 

prediction model uses the trajectories of 

both the vehicle in question and its 

neighbors. Though only a limited number of 

vehicles suffer from this lack of context, it 

may still impact the model’s ability to learn. 

A similar yet more pervasive issue is the 

degree of variation in starting positions. It 

would be one thing if these starting positions 

varied only between subsets or between the 

mainline and the on-ramps, but the variance 

can be found within any given lane of any 

given subset. This is clearly an error since 

vehicles were obviously not dropped from 

the sky onto the road while others drove into 

view conventionally, and it exacerbates the 

missing-neighbors problem since some 

vehicles will be without all their neighbors 

for a stretch of time. 

 The first problem can be easily fixed 

by simply omitting the early vehicles from 

the sample-feed while keeping their track 

history for the purpose of providing 

neighboring samples their full traffic 

context. The second issue could be fixed if 

the start positions are all beyond a certain 

threshold, which could be as a cutoff for 

whether to train or evaluate with any given 

sample. Such is the case for most of the 

subsets: for these, all lanes in the mainline 

solely feature starting positions within 50 

meters or so of the start-boundary for the 

study, while the starting positions for on-

ramp vehicles are consistently within a 

different but specific range. However, 

starting positions in the fifth lane of two US 

101 subsets range from 0.61 to 155.48 

meters away from the start of the study 

region. Though there are only five vehicles 

starting beyond 150 meters, they still pose a 

challenge since by that distance, the on-off-

auxiliary lane is fully connected to the 

mainline, making such a threshold infeasible 

to use as a criterion for inclusion as it would 

omit an important section of the freeway. 

 By contrast, the highD data contains 

little to none of the abnormalities found in 

NGSIM. The former has no vehicles with 

negative DHWs nor do any feature low 

velocities with no acceleration. Some 

trajectories accelerate just slightly over 3.05 

m/s2, but such are sparsely populated 

throughout the 60 subsets. 

 The highD dataset does feature 

errors, though. The most glaring of these 

occurs in three subsets of the same location, 

where trajectories from one traffic direction 

contains a good portion of vehicles going 

the wrong direction. These trajectories occur 

during what appears to be heavy congestion: 

the velocities continually slow till they reach 

0 m/s and then below it. Since these entries 

are the only where vehicles slow down to a 

standstill throughout the entire dataset, it is 

likely that the tracking algorithm breaks 

down when faced with such behavior. These 

trajectories cannot be rectified since it is 

uncertain whether the vehicles are moving 
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slowly or not at all and therefore could not 

be used to train or evaluate the model. 

 Because the backwards vehicles are 

contained to three of the 60 subsets and in 

only one direction, the issue is relatively 

minor compared to the far more pervasive 

issue of varying start positions. Like with 

NGSIM, the trajectories in the highD dataset 

do not consistently begin at the same point, 

yet unlike NGSIM, the distribution of these 

initial positions is far wider. Most of the 

vehicles in the highD set begin their 

trajectory at or before the starting point of 0, 

but 556 vehicles start their tracks at marks 

greater than 25 meters, and that excludes 

vehicles arriving at the study area when 

recording began and vehicles belonging to 

the three subsets already omitted. Because 

the span of each study area for the highD 

dataset is about a fifth shorter than the 

shortest study area featured in NGSIM, the 

starting threshold solution proposed earlier 

would sever off a significant number of 

entries simply to preserve the neighboring 

context for a handful of vehicles. This 

dilemma is exacerbated further by the fact 

that across the 57 preserved subsets, 25 

vehicles start at positions over 100 meters 

into the study section, three at 150 meters in, 

and two at the 200-meter mark. 

 Though the highD dataset is clean of 

the NGSIM errors, its own inconsistencies 

present a challenge for trajectory prediction. 

Therefore, these errors must be overcome 

before training and evaluating the model. 

 

Error Processing the highD Dataset 

 

Two remedies are implemented to solve the 

issue of various start positions. Since most 

of the vehicles begin their tracks within a 

small range of lateral positions, an initial 

cutoff is created by setting such to zero then 

incrementally increasing it by two meters 

until doing so does not add any new start 

positions to the cut-off region. 

As for the vehicles with starting 

positions beyond the cut-off, the absence of 

their starting trajectories poses an issue for 

their would-be neighbors. A remedy would 

be to remove the entries of would-be 

neighbors at the frames in which an adjacent 

vehicle is missing. However, since the exact 

number of missing frames is unknown, the 

entries of their would-be-neighbors cannot 

be removed without an estimation of how 

long it took for the vehicle to get from the 

cutoff to its first recorded position. Such an 

estimation can be made by leveraging the 

range of times it took for other vehicles in 

the same subset to get from the cutoff to the 

recorded starting point of the vehicle 

missing the beginning of its track. Because 

this duration is correlated with the velocity 

at the fake starting position, a linear model 

is created to predict how long it took for the 

vehicle in question to get from the cutoff to 

its first recorded position. This linear model 

is defined as 
 

𝑓𝑑𝑖�̂�  = 𝛽0  +  𝛽1𝑣𝑖𝑥, 

where 𝑓𝑑𝑖�̂� represents the number of frames 

for a vehicle of subset i to get from the 

cutoff to position x, 𝛽0,1 represent the 

coefficients, and vix represents the velocity 

of the vehicle at position x. For each given 

fake starting position, a model is created by 

providing a NumPy array containing the 

velocities of each fully tracked vehicle in the 

subset at or near position x and the number 

of frames it took for that vehicle to get from 

the cutoff to x. This array is then fed to a 

linear model creator imported from the 

Python package scikit-learn. Using the 

frame-duration generated by the linear 

model, a final safe-estimate is made via 
 

𝑚𝑓0,𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = 𝑓0,𝑣𝑒ℎ𝑖𝑐𝑙𝑒  −  𝑓𝑑𝑖,�̂�  −  2𝜎𝑖,𝑥, 

where vehicle is the vehicle missing the 

beginning of its trajectory, f0, vehicle is its first 

recorded frame, and 𝜎𝑖,𝑥 is the standard 

deviation in the number of frames it takes 
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for vehicles to get from the cutoff to x. The 

earliest missing frame combined with the 

frame prior to f0, vehicle form the safe estimate 

of missing frames for vehicle. All missing 

frame estimates are stored to be used for 

filtering the entries of any would-be 

neighbors at those frames. 

 

Deo and Trivedi Preprocessing Procedure 

 

Both the NGSIM and the highD datasets 

require certain preprocessing steps before 

feeding the samples to the model for 

training. This includes extracting relevant 

data fields, generating new ones, and 

partitioning the data into two sections: one 

for training and the other for evaluation. Deo 

and Trivedi’s (2018) steps for doing such 

are presented for further discussion. These 

steps, along with the error processing 

mentioned earlier, are all performed in 

Python by using NumPy arrays to store and 

transform the data prior to training and 

evaluating the model. 

 To predict a vehicle’s trajectory, the 

model takes three seconds worth of a 

vehicle’s positions as input, which equates 

to 30 individual entries since the frame rate 

for the NGSIM dataset is 10 frames per 

second. At each of these entries, the model 

takes the following: the x and y-coordinates, 

the lane identification number, the 

encodings for driving maneuvers, and the 

neighboring vehicles’ identification numbers 

and positions relative to the vehicle in 

question. 

To encode the lane change maneuver 

at a given time (or entry), the vehicle’s lanes 

four seconds before and after are compared. 

If the lane stays the same, the maneuver 

field is encoded with “1” (no lane change), 

“2” if the lane increases in that span (change 

from left to right), and “3” if the lane 

decreases in that span (change from right to 

left). 

As for the braking maneuver, a 

similar method is followed, but instead of 

looking four seconds forward and back, the 

positions corresponding to three seconds 

before and five seconds after are examined. 

The change in x positions between the 

earlier and current frame is compared with 

the change in x between the current and later 

frame. If 𝑑𝑥𝑓𝑢𝑡𝑢𝑟𝑒/𝑑𝑥𝑝𝑎𝑠𝑡 is less than 0.8, 

then the braking maneuver for that entry is 

encoded with “2” to represent that braking 

did occur; in any other case, the entry is 

encoded with “1” to represent no braking 

maneuver. 

 Because the neighboring vehicles 

must be readily accessible for the model, a 

13 x 3 spatial grid is defined for each entry. 

Each of the three columns represents a lane: 

the first corresponds to the neighboring left 

lane, the second to the entry’s own lane, and 

the third to the right lane. Within each lane’s 

columns, the rows are separated by 4.57 

meters, or about one car length (Deo and 

Trivedi, 2018). Therefore, neighbors are 

defined as being in the same lane or one 

adjacent to the target vehicle and within 

27.42 meters lengthwise. The exact row the 

neighbor belongs to in its lane’s column is 

determined by the formula 
 

𝑟𝑜𝑤 = 𝑟𝑜𝑢𝑛𝑑(
𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟− 𝑥𝑖

4.57
), 

where round is to the nearest integer. The 

resulting row is then populated with the 

neighbor’s identification number in the 

column corresponding to the neighbor’s 

lane. 

 Once the arrays of each subset 

feature all relevant data fields, they are 

ready to be partitioned into their training and 

evaluation sets. Deo and Trivedi’s (2018) 

partitioning method divides each subset by 

vehicle identification number. Vehicle ID’s 

at the 80th percentile or below are placed in 

the training set while the rest are put in the 

evaluation set. Each entry is then marked 
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with an identification number for the subset 

it originally belonged to.  

 Before merging the partitioned 

subsets into their train or evaluate set, each 

vehicle’s track has the first three and last 

fifth of a second filtered out so to allow for 

predictions on any of the used samples. 

Finally, the filtered tracks are merged into a 

single array that will function as the set of 

samples from which predictions will be 

made while the full tracks are placed in a 

dictionary data structure where the full track 

can be found with its vehicle and subset 

identification numbers when needed. 

 

Missing Neighbors and Biased Partitioning 

 

The preprocessing steps outlined above may 

be improved with respect to the creation of 

the neighbor grid. This is because the 

method for filling the grids has no recourse 

for instances where two or more vehicles are 

assigned to the same index: if a vehicle is 

already encoded into an index, its 

identification number is overwritten when a 

new vehicle is assigned to it. Though the 

highD dataset never suffers from such, 

across all entries in the NGSIM dataset, over 

116,000 instances of shared-grid spaces 

occur. The issue is amplified even further by 

the partitioning method. Since partitioning is 

based on identification number, which is 

primarily a product of when the vehicle was 

recorded, the splits correlate to time; 

vehicles in the training set will mostly 

feature earlier frames than those of the 

evaluation set. Some frames, however, will 

be shared by both sides of the split, thereby 

separating vehicles from their neighbors.  

Another consequence of the 

partitioning method are biases towards 

earlier frames in the training set than the 

evaluation set. This is an issue because 

earlier frames typically feature less 

congestion than later ones, meaning the 

types of trajectories featured in one will 

favor certain traffic conditions different than 

those in the other.  

A more complete neighbor grid can 

be generated by using smaller grid spacing 

or by redirecting vehicles with the same 

index to different indices within the grid, 

and a framebuffer would ensure that 

vehicles are not separated from their 

neighbors during partitioning and that the 

two sets are not exposed to the same entries. 

However, these tactics have their own 

consequences. Redirecting vehicles to 

different indices or decreasing the distance 

between indices in the neighbor-grid may 

distort the data somewhat by presenting 

vehicles to be at different grid locations than 

they really are. Partitioning with a frame 

buffer would omit samples to be used for 

training or evaluation, and the frame buffer 

would not solve the issue of biased 

partitioning. The nature of partitioning a 

subset will always face an inevitable trade-

off. On the one hand, splitting the data by 

frame, positioning, or any other data field 

will lead to some sort of bias; on the other, a 

randomly partitioned subset will sever 

vehicles from their neighbors. A way to 

partition unbiasedly while maintaining the 

connection between neighboring vehicles 

would be to allow the model to view the any 

neighboring track regardless of its assigned 

set. Such would destroy the integrity of the 

train-evaluate split altogether, since the 

model would have tangential access to the 

evaluation set’s data: a process tantamount 

to cheating on an exam. 

Because of the spatial-temporal 

nature of traffic, there is no clean way to 

split a single subset. Both the partitioning 

issue and the index-collisions are therefore 

left unresolved, and the NGSIM data are 

used only to verify that the model itself 

produces similar-enough results to those of 

Deo and Trivedi’s (2018) work. 
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Preprocessing the highD Dataset 

 

The highD dataset differs from the NGSIM 

dataset in ways that completely avoid the 

preprocessing complications that plague the 

latter. The spacing between vehicles in the 

highD data is sufficiently large enough to 

avoid a single instance of index collision 

when generating an entry’s neighbor grid, 

and the multitude of subsets from the same 

locations allows the collection to be 

partitioned without dividing a single subset. 

Before partitioning or conducting most of 

the preprocessing steps outlined above, the 

subsets required additional steps to ensure 

consistency both between the trajectories 

and between the highD dataset and the 

NGSIM dataset. 

 While each vehicle’s position comes 

from its front and center in the NGSIM data, 

the positions in the highD data come from 

the upper-left corner of the bounding box 

generated during object tracing. For vehicles 

in the upper-lanes of traffic, this corresponds 

to the right-hand side of the front bumper 

but corresponds to the back-left for vehicles 

in the lower lanes which are heading in the 

opposite direction. Furthermore, because the 

positions within a subset are based on the 

coordinates within the study site regardless 

of driving direction, vehicles in the upper-

lanes featured decreasing positions (from 

420 meters down to zero) while vehicles in 

the lower-lanes featured increasing 

coordinates (from zero to 420). 

Because the model is primarily 

concerned with the change in position over 

time, the fact that positions are not based on 

the front and center of the vehicle is not of 

great importance so long as such is 

consistent. It does, however, greatly affect 

lane changes. Vehicles in the upper-lanes 

are often found to switch to the right-hand 

lane before quickly moving back to their 

original lane, while vehicles in the lower-

lanes can be found to move from their lane 

to the lane on their left before quickly 

moving back. These are not real lane 

changes but rather vehicles swaying slightly 

out of their lane then adjusting back to it. 

Positions therefore needed to be adjusted to 

represent their front-and-center as opposed 

to the upper-left-corner positions. 

 After splitting each subset into two 

based on direction of travel, adjusting the 

positions to correspond to the front-and-

center of each vehicle requires the vehicle’s 

dimensions and the angle of its trajectory. 

The highD dataset does not explicitly give 

the trajectory angle for each entry but does 

so implicitly by providing the velocities 

along the x and y axes. The angle of travel, 

𝜃, is derived by taking the arctangent of the 

two velocities.  For vehicles going from left 

to right, the front-center position for each 

vehicle is derived by 
 

𝑥𝑓𝑟𝑜𝑛𝑡 = 𝑥 + 0.5 ∗ 𝑤 ∗ 𝑠𝑖𝑛𝜃 + 𝑙 ∗ 𝑐𝑜𝑠𝜃,  

𝑦𝑐𝑒𝑛𝑡𝑒𝑟 = 𝑦 − 0.5 ∗ 𝑤 ∗ 𝑐𝑜𝑠𝜃 + 𝑙 ∗ 𝑠𝑖𝑛𝜃, 

where w and l correspond to the width and 

length of the vehicle in question, and x and y 

correspond to those values for the entry in 

question. The equivalent for vehicles 

moving from right to left are 
 

𝑥𝑓𝑟𝑜𝑛𝑡 = 𝑥 − 0.5 ∗ 𝑤 ∗ 𝑠𝑖𝑛𝜃, and 

𝑦𝑐𝑒𝑛𝑡𝑒𝑟 = 𝑦 + 0.5 ∗ 𝑤 ∗ 𝑐𝑜𝑠𝜃. 

After these translations, to avoid any 

other possible confusion for the model, the 

direction of travel for vehicles in the upper 

lanes needs to be reversed so their x-

coordinates ascend from zero to 420 rather 

than descend from 420 to zero. To do so, the 

x-coordinates must be reflected about the y-

axis. Likewise, both the y-coordinates and 

the lane identification numbers need to be 

reflected about the x-axis so that lane 

changes would not be distorted. Reflections 

XR, YR, and LR are expressed by 
 

𝑋𝑅 =  −(𝑋 − 𝑚𝑎𝑥(𝑋)), 
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𝑌𝑅 =  −(𝑌 − 𝑚𝑎𝑥(𝑌)), 

𝐿𝑅 =  −(𝐿 − 𝑚𝑎𝑥(𝐿)), 

where X, Y, and L represent the entire array 

of values for x, y, and lane ID that belong to 

the trajectories in the upper-lanes of a 

subset, and max represents the maximum-

value function. These equations have the 

effect of taking the largest value and making 

it the smallest and vice-versa: if the max 

value for a field is 20, then all values of 20 

become zero, all values of 19 become one, 

values of 18 become two, and so on. 

 The final additional step is to reduce 

the amount of memory required to store the 

data so the model can process it more 

quickly. In their original state, the arrays 

store the data with 32-bits for each datum. 

Only the positional coordinates, which are 

given in meters to the thousandths, require 

more than 16 bits and are barely over its 

limit. Because the highD engineers state its 

accuracy to be within 10 centimeters of 

error, the centimeter unit can be discarded. 

From there, the units are converted to 

decimeters, at which point the data can be 

stored in NumPy arrays as unsigned-16-bit 

integers. However, the machine learning 

environment used for training and 

evaluating the model cannot process such a 

datatype: it can only process signed-16-bit 

integers, and in such a form, the largest of 

the x-coordinates would be over the capacity 

limit and lose its value in storage. To work 

around this, the x-coordinates of each subset 

are “centered” at zero by subtracting the 

median-x-value from the entirety of the 

subset’s x-coordinates. In this state, none of 

the x-values exceed the lower or upper 

limits for NumPy’s 16-bit integer datatype. 

 After this conversion, the original 

preprocessing steps are conducted in the 

same way as outlined earlier. Filtering also 

occurs, but the missing frames kept earlier 

are used to filter out any would-be neighbors 

of vehicles as well. To determine if a vehicle 

would be a neighbor, an x position for the 

vehicle is required across its missing frames. 

The x for each missing frame is estimated by 

assuming a constant velocity from the cutoff 

to the first-known position. Because this is 

an estimation, the neighbor-radius is 

increased to 40 meters to account for the 

likely error. 

 Finally, the subsets are assigned to 

train and evaluate sets. To ensure 

proportionality, the allocation of subsets is 

selected so that the total number of vehicles 

belonging to the training set is four times as 

many as the number in the evaluation set, or 

the same proportionality as in Deo and 

Trivedi’s (2018) study. To ensure exposure 

to locations, subsets are allocated so that the 

evaluation set has at least one subset from 

each location in both directions of travel. All 

possible allocations are produced that meet 

these criteria; from these, the allocation 

where the training set’s traffic conditions 

differ the least from that of the evaluation 

set is chosen to be the final. 

 To best compare the overall variety 

of traffic conditions featured in the 

allocation possibilities, traffic flow per lane 

is used. The traffic flow per lane for a given 

subset is determined by the equation 
 

𝑓𝑙𝑜𝑤 =
|𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠|

|𝑙𝑎𝑛𝑒𝑠|∗|𝑠𝑒𝑐𝑜𝑛𝑑𝑠|
, 

where |vehicles| is the number of vehicles in 

the subset, |lanes| is the number of lanes, 

and |seconds| is the duration of time for the 

subset (Hall, 1992). The composition of 

each possible training and evaluation set can 

be determined by using the weighted 

average and weighted standard deviation of 

traffic flow. The weights for such are 

determined not by the number entries 

originally in each subset but rather by the 

number of kept entries after all 

preprocessing, since the model will gain 

exposure to these traffic conditions only via 

those kept. The weighted average of one of 
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the splits can be derived by 
 

𝜇𝑁 = ∑ 𝑤𝑖  𝑓𝑙𝑜𝑤𝑖
|𝑁|
𝑖 = 1  , 

where |N| represents the number of subsets 

in N, and wi represents the assigned weight 

for subset i, which is derived in turn by 
 

𝑤𝑖 =
|𝑒𝑛𝑡𝑟𝑖𝑒𝑠|𝑖

|𝑒𝑛𝑡𝑟𝑖𝑒𝑠|
,  

where |entries|i is the number of kept-entries 

for the subset i, and |entries| is the number 

of kept-entries in total for the assortment of 

subsets in question. This average gives the 

average traffic condition faced by a given 

entry in one of the splits. However, to 

account for outliers, the weighted standard 

deviation is used as well. The weights are 

used so to account for the uneven 

distribution of kept entries across the 

different subsets. This can be derived by 
 

𝜎 =  √∑ 𝑤𝑖 (𝑓𝑙𝑜𝑤𝑖  −  𝜇)
2 |𝑁|

𝑖 = 1 . 

 The optimal sorting of subsets 

renders a weighted average traffic flow of 

0.349 vehicles per lane and second for the 

training set and 0.351 for the evaluation set 

while the weighted standard deviations came 

in at 0.076 and 0.075. Both of metrics differ 

by just over a thousandth of a vehicle per 

lane and second. Though a higher weighted 

standard deviation for the evaluation set 

would be preferred, all other possibilities 

compromise proportionality or similarity. 

 

Training and Evaluating the Model 

 

When training a neural network or any other 

model with machine learning, the goal is to 

calibrate the weights contained within the 

model so that it produces the best-possible 

output, where best-possible is usually 

defined as being the most accurate. To 

calibrate in such a way, a machine learning 

environment measures the error of a given 

guess and recalibrates the model’s weights 

given this error. if its previous recalibration 

resulted in a decrease in error, the training-

environment figures that it made a good 

adjustment, and adjusts further based on this 

feedback, and then has the model guesses on 

another sample. This feedback-loop 

continues until all samples have been 

processed. 

 This learning-process is defined by a 

set of learning parameters. Because the 

learning parameters will vary from model to 

model, engineers often adjust these 

parameters after a learning-cycle, or after all 

the samples have been processed through. 

Such parameters include the error-function, 

the number of samples provided between 

weight-calibration, or batch-size, and the 

optimization function, which determines 

how error measures will impact changes to 

the model’s weights. 

 Deo and Trivedi (2018) use the 

open-source machine learning library 

PyTorch for the entirety of their training and 

evaluation. They measure error with both 

root-mean-square error (RMSE) and 

negative log-likelihood (NLL), feature 128 

samples per batch, and use the optimization 

algorithm ADAM to calibrate model 

weights. They switch between the error 

measures by training five cycles with RMSE 

then three with NLL. Because the purpose of 

this project is to evaluate theirs with 

different data, all learning parameters are 

kept except for the method of measurement 

for NLL. In their code, Deo and Trivedi 

inconsistently measure NLL (Deo and 

Trivedi, 2018), so the negative log-loss 

function is adjusted so it is both consistent 

with the probability density function of a 

bivariate normal distribution and consistent 

throughout the code (Weisstein, 2002). 

 

Results 

 

Because of the adjustment to the calculation 

for NLL, the comparison of errors from Deo 



13 

 

and Trivedi’s (2018) study and that of this 

paper is kept strictly to the average RMSE 

as presented in Table 1. 

 
Table 1. Comparison between Deo and Trivedi’s (2018) 

and this project’s evaluative root mean square errors 

(RMSE) at each second across the five second prediction 

horizon when using the NGSIM dataset; RMSE equates to 

the average distance between the predicted and actual 

positions at a given time along the prediction horizon. 

Time (s) Deo & Trivedi, 

NGSIM (m) 

Hamalainen, 

NGSIM (m) 

1 0.62 0.59 

2 1.29 1.29 

3 2.13 2.14 

4 3.20 3.18 

5 4.52 4.48 

 

The difference in error between Deo and 

Trivedi’s (2018) and this study’s is minor 

enough to deem the replica a fair 

representation of their model. The 

comparison between this study’s NGSIM 

and highD results is expanded to include 

maneuver accuracies as seen in Table 2. 

 
Table 2. Comparison between the model’s evaluative root-

mean-square error (RMSE) when using the NGSIM and 

highD dataset at each second across the five second 

prediction horizon; RMSE equates to the average distance 

between the predicted and actual positions at a given time 

along the prediction horizon. 

Error Measure Time (s) NGSIM highD 

 

 

 

RMSE (m) 

1 0.59 0.26 

2 1.29 0.78 

3 2.14 1.54 

4 3.18 2.69 

5 4.48 7.85 

Lane Change Accuracy 97.96 % 97.94% 

Braking Accuracy 89.29 % 99.94% 

 

 

Discussion 

 

Across the first four seconds of a vehicle’s 

trajectory, the model and machine learning 

algorithm perform better on the highD 

dataset than on the NGSIM dataset, but the 

model is exceedingly worse at predicting the 

fifth second. Though the lane change 

accuracies are similar, the model learns the 

breaking tendencies of the highD data far 

better than it learns those of the NGSIM 

data. 

 The differences between Deo and 

Trivedi’s (2018) work and this project’s 

NGSIM results should be addressed before 

other discussion. Though the preprocessing 

steps are modified for the highD dataset, the 

only modification made for the NGSIM set 

is that made to the negative log-likelihood 

function. Such a change is a probable 

explanation for the difference in RMSE: the 

model learned from a more consistent error 

function. However, the model samples from 

the dataset randomly, the order of these 

samples simply may have been somehow 

better for the model.  

As for the differences between this 

paper’s model’s attempts with NGSIM and 

highD, the exact explanations are less clear. 

A likely candidate for the difference in 

braking maneuver accuracy is the inaccurate 

vehicle positions in the NGSIM data, whose 

velocities and accelerations are so erratic 

that they may not conform to a consistent 

pattern as does those of the highD dataset. 

However, the traffic patterns themselves 

may also play a role in this difference. 

Braking tendencies on an open road are 

somewhat more logical than those in 

congested conditions. In the former, when 

approaching a slower lead vehicle, the driver 

can either change lanes or slow down; when 

the adjacent lanes are occupied in this 

situation, braking becomes the only option. 

Driving tendencies also may make it easier 

for the model, too, since European drivers 
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are more likely to reserve the left lanes for 

passing, making maneuvers generally more 

predictable (Treiber and Kesting, 2009). 

 This last point would be expected to 

translate into an advantage for the lane 

changing maneuvers as well. The fact that it 

does not may be explained by the roadways 

themselves: the NGSIM highways feature 

some sort of on-ramp on the right side of 

their roadways. The geometries are even 

more similar when accounting for the fact 

that while Interstate 80 does not feature an 

off-ramp in its study area like US 101 does, 

there is an off-ramp located just outside of 

the former’s region. Such lends itself to a 

clear pattern in lane changing for the right-

most lanes, giving NGSIM a sort of counter-

advantage to the highD dataset, where only 

three of the subsets feature a sole on-ramp. 

 As for the change in RMSE over 

time, explanations are even less cle 

ar and somewhat compete. On the one hand, 

because of the greater diversity of speeds in 

the highD data, one may expect the model to 

have more difficulty learning its tendencies 

than those of the NGSIM data, whose 

velocities are more uniform. On the other 

hand, the erroneousness of the latter may be 

difficult to translate into any consistent and 

definable pattern. Furthermore, dense traffic 

conditions may simply be less stable: a 

possibility that would explain both the errors 

in the NGSIM data and the errors found in 

the highD data’s congested subsets. The 

preprocessing errors may be a cause, too, 

since the neighboring traffic context is not 

fully presented in the final NGSIM dataset.  

Though the highD iterations win or 

tie in almost all regards, their one 

shortcoming – the great leap in error after 

four seconds – is better understood through 

a more detailed view. This can be seen in in 

Figure 3, where the errors for every one-fifth 

of a second are given and plotted alongside 

the change in error at each step. At the 

fourth second, the change in error steeply 

increases, indicating a greater degree of 

difficulty with predictions at that moment 

than earlier. Though the variety of speeds 

explains why the highD iterations fall short 

of NGSIM after a certain speed, it may not 

explain this sudden growth in error. If 

vehicle A travels at 30 m/s and B at 40 from 

the same starting position, their difference in 

position after one second is less than it will 

be after four, but such adjusts linearly. This 

can be seen with the NGSIM change in 

error, and with a greater degree of variety, 

one would expect the same, just steeper. 

Therefore, this increase goes beyond just the 

greater diversity of traffic flow. 

 

 
Figure 3. Comparison between the model’s evaluative root-

mean-square error (RMSE) when using the NGSIM and 

highD dataset; depicted are comparisons of both the RMSE 

and change in RMSE at each time-step (one fifth of a 

second) across the prediction horizon of five seconds; 

RMSE is best thought of as the average distance between 

the predicted and actual positions at a given time-step along 

the prediction horizon. 

Conclusion 

 

The results shown are by no means proof 

that autonomous vehicles will have the 

ability to avoid all possible accidents, but 

they do show promise when considering the 

limited samples provided. Furthermore, 

because the model generally improved when 

given less erroneous data, perhaps the 

improvement can continue as more accurate 

datasets become available. 
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It should be reminded that both the 

NGSIM and highD datasets come from 

aerial recordings: a far different perspective 

than that of a vehicle. For an AV to view its 

surrounding environment without any 

outside-help, it would need to be through an 

on-board sensor. Though this would 

generate similar inputs, in a dense traffic 

environment, they would be limited to just 

the vehicles immediately surrounding it, 

since they would block the view of other 

vehicles. Because of the interdependence 

that vehicles have on each other, omitting 

those others would likely impact the model’s 

performance in dense traffic scenarios. 

A way around would be the use of an openly 

available trajectory feed generated by 

overhead cameras or by mandating that 

vehicles communicate their positions using 

inter-vehicle connectivity systems.  The 

latter would be especially promising as 

vehicles could broadcast velocities, 

accelerations, and signals in addition to the 

positions themselves. However, such 

methods raise concerns over privacy: should 

drivers be required by law to broadcast their 

positions or driving intentions to the public? 

Many do exactly this when they use 

navigation applications like Google maps, 

but drivers are not required by law to do so. 

Such dilemmas show that the deployment 

effective autonomous vehicles may require 

ethical compromises. 

Above all things, this study should 

highlight the need for more accurate and 

abundant driving data. Hundreds and 

thousands of studies have used the NGSIM 

dataset in one way or another, and only a 

handful do so to examine its flaws (Coifman 

and Li, 2017). Without more accurate data, 

human driving tendencies may forever be a 

mystery. A lack of such knowledge may 

slow the approach of fully autonomous 

vehicles and their benefits or require 

governments and other stakeholders to 

segregate conventionally driven vehicles 

from the autonomously driven ones. 
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Appendix A. NGSIM Dataset Location Information. Vehicles represents the total number of unique vehicles 

featured, and entries represents the number of unique vehicle positions. 

 

Location Date & Time Lanes Vehicles Entries 

I-80 Oakland, CA 04/13/2005 16:00 - 16:15 6 + on-ramp 2,052 1,262,678 

I-80 Oakland, CA 04/13/2005 17:00 - 17:15 6 + on-ramp 1,836 1,549,918 

I-80 Oakland, CA 04/13/2005 17:15 - 17:30 6 + on-ramp 1,790 1,753,791 

US 101 Los Angeles, CA 06/15/2005 07:50 - 08:05 5 + auxiliary on-off-ramp 2,169 1,180,598 

US 101 Los Angeles, CA 06/15/2005 08:05 - 08:20 5 + auxiliary on-off-ramp 2,017 1,403,095 

US 101 Los Angeles, CA 06/15/2005 08:20 - 08:35 5 + auxiliary on-off-ramp 1,915 1,515,240 
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Appendix B. HighD Dataset Location Information. All data from the highlighted (yellow) subsets were omitted due 

to an abundance of backward trajectories. 

 

Location 1 (Bundesbahn 4) Subsets 

ID Day of Week, Month Year (Time) L: 3 lanes R: 3 lanes 

Vehicles Entries Vehicles Entries 

1 Fri., 09 2017 (08:21 - 08:30) 466 137,811 389 119,220 

2 Fri., 09 2017 (08:37 - 08:55) 823 245,296 797 236,956 

3 Fri., 09 2017 (09:24 - 09:42) 723 219,985 697 216,649 

4 Fri., 09 2017 (10:36 - 10:46) 413 120,487 443 137,825 

 

Location 2 (Bundesbahn 61) Subsets 

ID Day of Week, Month Year (Time) L: 2 lanes  R: 2 lanes 

Vehicles Entries Vehicles Entries 

5 Fri., 09 2017 (08:49 - 09:01) 424 143,807 498 167,336 

6 Fri., 09 2017 (09:11 - 09:27) 418 141,663 580 196,389 

7 Fri., 09 2017 (09:35 - 09:50) 404 131,988 573 191,662 

8 Fri., 09 2017 (10:07 - 10:17) 249 77,615 358 113,280 

9 Fri., 09 2017 (10:24 - 10:40) 449 149,464 550 178,830 

10 Fri., 09 2017 (10:47 - 10:54) 577 197,332 622 208,307 

11 Fri., 09 2017 (11:10 - 11:27) 484 157,428 593 196,002 

12 Fri., 09 2017 (11:44 - 11:53) 289 100,028 400 136,176 

13 Fri., 09 2017 (12:06 - 12:22) 726 267,060 588 200,005 

14 Fri., 09 2017 (12:27 - 12:43) 683 230,997 614 210,015 

 

Location 3 (Bundesbahn 4) Subsets 

ID Day of Week, Month Year (Time) L: 3 lanes & on-ramp R: 3 lanes 

Vehicles Entries Vehicles Entries 

15 Wed., 07 2018 (09:15 - 09:21) 373 117,738 341 115,501 

16 Wed., 07 2018 (09:23 - 09:31) 376 119,904 346 111,316 

17 Wed., 07 2018 (09:37 - 09:53) 733 240,571 734 259,923 
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Location 4 (Bundesbahn 61) Subsets 

ID Day of Week, Month Year (Time) L: 3 lanes R: 3 lanes 

Vehicles Entries Vehicles Entries 

18 Thu., 09 2017 (16:18 - 16:28) 1,023 399,790 753 258,981 

19 Thu., 09 2017 (17:21 - 17:36) 1,451 683,865 1,277 449,016 

20 Thu., 09 2017 (18:04 - 18:22) 1,632 607,596 1,317 437,394 

21 Thu., 09 2017 (18:28 - 10:46) 1,573 557,865 1,271 423,744 

22 Mon., 10 2017 (08:55 - 09:15)  1,232 1,306,832 1,618 712,920 

23 Mon., 10 2017 (09:20 - 09:39)  1,123 819,787 1,585 766,244 

24 Mon., 10 2017 (09:46 - 10:06)  1,131 390,694 1,468 561,946 

25 Mon., 10 2017 (10:12- 10:33) 1,116 383,280 1,256 435,371 

26 Mon., 10 2017 (10:39 - 10:58) 1,014 352,317 1,138 404,511 

27 Mon., 10 2017 (11:03 - 11:23) 1,178 421,427 1,301 461,603 

28 Mon., 10 2017 (11:28 - 11:47) 1,038 364,327 1,216 444,564 

29 Mon., 10 2017 (12:20 - 12:33) 685 237,673 725 252,863 

30 Mon., 10 2017 (12:41 - 12:59) 1,062 379,386 1,190 423,048 

31 Mon., 10 2017 (13:34 - 13:48) 862 310,693 911 325,468 

32 Wed., 10 2017 (11:26 - 11:44) 984 340,423 1,008 351,042 

33 Wed., 10 2017 (11:09 - 11:30) 1,237 490,654 1,306 461,482 

34 Wed., 10 2017 (11:55 - 12:13) 1,011 358,283 1,077 349,711 

35 Wed., 10 2017 (12:20 - 12:40) 1,160 406,202 1,220 425,244 

36 Mon., 10 2017 (09:04 - 09:24) 1,191 391,015 1,208 405,144 

37 Mon., 10 2017 (09:30 - 09:50) 1,272 420,737 1,091 357,923 

38 Mon., 10 2017 (10:41 - 11:00) 1,306 443,153 1,138 379,700 

39 Mon., 10 2017 (11:05 - 11:23) 1,194 405,917 1,077 349,711 

40 Mon., 10 2017 (11:31 - 11:48) 1,312 440,163 1,237 411,762 

41 Mon., 10 2017 (11:54 - 12:14) 1,261 425,093 1,118 390,600 

42 Mon., 10 2017 (12:23 - 12:41) 1,319 436,460 1,502 654,508 

43 Wed., 11 2017 (08:47 - 09:07) 1,253 441,615 1,209 413,570 

44 Wed., 11 2017 (09:15 - 09:37) 1,280 448,130 1,264 421,874 
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45 Wed., 11 2017 (09:38 - 09:57) 1,033 351,733 1,063 356,664 

46 Wed., 11 2017 (10:02 - 10:19) 1,141 389,865 1,093 365,876 

47 Wed., 11 2017 (11:38 - 11:57) 1,163 390,570 1,121 378,828 

48 Wed., 11 2017 (12:05 - 12:23) 1,121 375,327 1,000 337,049 

49 Wed., 11 2017 (12:30 - 12:47) 1,235 427,657 1,207 411,374 

50 Wed., 11 2017 (13:15 - 13:32) 1,096 360,541 1,247 413,932 

51 Thu., 01 2018 (09:16 - 09:34) 1,050 352,439 1,140 384,900 

52 Thu., 01 2018 (09:39 - 09:57) 822 276,301 973 333,718 

53 Thu., 01 2018 (10:04 - 10:20) 953 320,787 966 319,183 

54 Thu., 01 2018 (10:26 - 10:44) 373 117,738 341 115,501 

 

Location 5 (Bundesbahn 61) Subsets 

ID Day of Week, Month Year (Time) L: 3 lanes R: 3 lanes 

Vehicles Entries Vehicles Entries 

55 Thu., 09 2017 (11:16 - 11:34) 575 197,312 588 193,375 

56 Thu., 09 2017 (11:41 - 12:00) 599 203,652 617 198,886 

57 Thu., 09 2017 (12:06 - 12:26) 670 229,536 698 226,287 

 

Location 6 (Bundesbahn 46) Subsets 

ID Day of Week, Month Year (Time) L: 2 lanes R: 2 lanes 

Vehicles Entries Vehicles Entries 

58 Tue., 09 2017 (08:38 - 08:53) 594 199483 453 149267 

59 Tue., 09 2017 (09:04 - 09:21) 689 237723 424 140392 

60 Tue., 09 2017 (09:54 - 09:11) 497 163884 417 139604 
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Appendix C. Velocity Distributions for NGSIM and highD. These tables show the minimum and maximum 

velocities (MIN and MAX) along with the 2.5th, 50th, and 97.5th percentile speeds as well as the average (AVG) and 

standard deviation (STD). The velocity distributions are indicative of the type of traffic scenarios featured in each 

subset, with the highD data being far more diverse than the NGSIM data. All data from the highlighted (yellow) 

subsets were omitted due to an abundance of backward trajectories. 

 

NGSIM VELOCITY DISTRIBUTIONS 

ID  MIN 2.5% 50% 97.5% MAX AVG STD 

I80A  0.0 0.89 7.48 18.48 29.05 7.72 4.06 

I80B  0.0 0.0 4.88 15.24 29.05 5.62 3.89 

I80C  0.0 0.0 4.23 13.74 29.05 4.83 3.62 

US101A  0.0 1.33 11.96 19.56 29.05 11.43 4.53 

US101B  0.0 0.22 9.15 15.91 29.05 8.94 4.09 

US101C  0.0 0.49 8.03 14.68 29.05 7.84 3.67 

 

highD VELOCITY DISTRIBUTIONS 

ID MIN 2.5% 50% 97.5% MAX AVG STD 

L1 21.54 23.29 33.79 44.6 49.24 33.1 6.21 

R1 21.83 23.46 33.73 47.6 61.17 33.22 7.09 

L2 21.03 23.43 33.67 46.81 57.65 33.49 6.74 

R2 21.53 23.33 33.76 48.13 61.72 33.55 7.39 

L3 21.17 23.05 33.18 47.36 56.37 32.93 7.17 

R3 17.25 22.99 32.23 45.89 68.28 32.21 6.8z 

L4 21.89 23.4 34.25 50.27 59.45 34.08 7.55 

R4 21.6 23.4 32.91 46.25 58.64 32.53 6.56 

L5 19.53 22.53 28.76 40.99 54.1 29.54 5.57 

R5 21.08 22.54 29.6 39.74 44.62 29.82 5.07 

L6 19.62 22.39 29.22 42.3 54.23 30.03 6.06 

R6 20.73 22.28 29.28 42.46 56.4 29.92 5.83 

L7 19.66 22.05 31.03 43.26 64.0 30.6 6.23 

R7 19.11 22.54 30.26 40.81 50.09 30.15 5.11 

L8 21.62 22.91 31.95 45.87 54.75 31.92 6.63 

R8 19.99 22.85 32.09 45.33 61.07 31.86 5.76 

L9 20.22 22.18 30.38 42.13 50.6 30.35 5.70 

R9 20.67 22.92 31.99 41.03 46.75 31.41 5.22 

L10 19.75 22.56 29.43 39.92 50.2 29.66 5.20 

R10 19.26 22.29 30.51 40.55 51.54 30.16 5.16 

L11 20.86 22.57 31.14 42.74 52.92 30.84 5.83 

R11 20.15 22.98 31.05 40.64 55.11 30.73 5.03 

L12 19.69 21.31 27.98 40.9 50.31 28.96 5.48 

R12 21.46 22.77 29.45 38.95 46.17 29.34 4.41 

L13 16.66 20.39 26.32 36.68 46.66 27.15 4.40 

R13 20.98 22.63 30.26 39.74 48.9 30.05 4.82 

L14 20.68 22.13 29.38 40.74 47.64 29.62 5.23 

R14 19.77 22.46 29.33 40.58 53.92 29.72 5.19 

L15 12.83 20.81 31.22 41.95 55.29 30.97 5.93 

R15 -1.87 19.87 28.08 39.15 52.0 28.08 5.46 

L16 14.76 21.77 31.41 42.35 53.47 31.12 5.90 

R16 12.55 20.32 29.64 42.91 61.28 29.83 6.37 

L17 11.48 21.28 31.01 42.01 51.43 30.51 5.96 

R17 16.4 18.84 28.56 40.14 62.71 28.31 5.90 

L18 17.41 20.05 25.42 32.54 40.65 25.6 3.10 

R18 19.37 22.42 30.06 36.7 40.4 29.46 4.17 

L19 4.07 12.03 20.88 30.67 36.57 21.41 4.53 

R19 19.1 22.31 28.65 36.83 42.25 28.71 4.05 
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L20 17.49 21.28 26.61 35.77 41.86 27.15 4.02 

R20 19.45 22.82 31.11 38.21 43.8 30.53 4.32 

L21 19.54 21.91 28.11 36.81 42.16 28.42 4.19 

R21 16.0 22.5 30.78 38.54 44.59 30.31 4.43 

L22 -0.43 1.98 9.62 15.95 20.4 9.23 3.87 

R22 2.73 6.97 23.4 29.64 34.43 22.45 5.20 

L23 -2.51 3.16 12.51 31.89 43.49 13.48 6.79 

R23 5.37 13.58 21.26 26.76 33.16 20.73 3.523 

L24 16.73 21.26 30.14 38.11 54.25 29.44 4.93 

R24 11.79 18.85 25.14 35.81 41.88 26.27 4.77 

L25 17.03 21.78 30.5 39.0 50.14 29.62 5.26 

R25 18.62 22.17 29.93 37.19 45.33 29.32 4.33 

L26 14.96 21.78 29.95 37.74 46.09 29.27 4.67 

R26 17.39 21.02 29.24 36.94 49.31 28.66 4.69 

L27 18.58 21.38 28.75 36.63 43.95 28.44 4.57 

R27 16.98 21.52 29.07 36.29 44.04 28.64 4.28 

L28 19.24 21.22 29.82 37.63 45.34 29.09 4.95 

R28 16.66 20.99 27.88 35.85 45.07 27.87 4.41 

L29 18.88 21.88 29.7 37.87 44.64 29.0 4.79 

R29 19.05 21.88 29.88 36.84 51.63 29.11 4.56 

L30 18.38 21.41 28.85 36.81 47.61 28.42 4.73 

R30 17.84 21.49 28.94 36.58 42.7 28.52 4.35 

L31 19.29 21.73 28.62 35.92 42.11 28.19 4.38 

R31 14.5 21.28 28.85 35.65 42.08 28.31 4.21 

L32 11.51 21.93 30.03 38.17 51.73 29.38 4.93 

R32 11.29 22.1 29.4 37.71 43.4 29.1 4.64 

L33 -0.1 5.27 25.53 35.7 42.08 25.26 7.27 

R33 17.28 21.97 29.24 36.92 42.32 28.75 4.43 

L34 18.99 21.71 28.58 36.71 45.0 28.47 4.54 

R34 18.53 21.83 30.09 39.21 53.1 29.44 5.04 

L35 18.61 21.4 29.57 37.38 46.17 28.9 4.88 

R35 20.27 22.36 29.76 37.83 45.29 29.18 4.73 

L36 16.49 21.7 30.48 39.53 49.08 29.96 5.135 

R36 18.58 22.23 31.48 40.32 52.27 30.8 5.09 

L37 17.63 22.22 31.44 39.62 50.64 30.8 5.00 

R37 19.81 22.22 30.34 39.35 56.64 30.19 4.82 

L38 16.86 21.77 31.12 38.88 57.08 30.45 4.99 

R38 17.95 22.77 31.7 39.24 50.2 30.94 4.67 

L39 18.23 22.0 30.24 38.01 45.47 29.79 4.62 

R39 16.04 22.65 30.87 38.71 46.93 30.33 4.61 

L40 15.32 21.62 30.34 38.46 48.58 29.87 4.87 

R40 20.89 23.05 31.94 40.09 51.09 31.36 4.78 

L41 19.39 22.41 30.56 38.73 56.71 30.08 4.82 

R41 16.3 22.85 31.02 39.5 46.66 30.49 4.84 

L42 19.95 22.13 30.48 38.28 47.49 30.01 4.67 

R42 20.67 22.71 31.46 39.83 46.95 30.81 4.88 

L43 19.62 22.53 30.99 38.67 46.41 30.44 4.79 

R43 2.28 6.56 24.08 35.36 44.99 22.95 6.96 

L44 17.99 21.09 28.45 37.6 45.59 28.69 4.63 

R44 17.03 22.18 29.69 38.21 43.48 29.66 4.57 

L45 17.47 21.49 29.43 37.2 45.19 29.09 4.53 

R45 20.35 23.07 30.86 38.12 46.72 30.27 4.54 

L46 19.1 22.1 30.15 38.94 45.73 29.83 4.94 

R46 19.0 22.83 30.7 38.03 43.85 30.12 4.53 

L47 20.14 22.44 29.43 39.18 57.3 29.6 5.07 

R47 20.69 23.01 30.8 39.06 46.02 30.25 4.74 

L48 20.41 22.89 31.01 39.12 45.33 30.24 4.99 

R48 20.01 22.7 30.07 38.76 49.1 29.91 4.77 

L49 20.43 22.59 30.41 38.99 48.23 30.04 4.98 

R49 18.11 22.7 30.3 38.49 45.97 30.0 4.75 

L50 19.15 22.59 29.52 38.18 46.86 29.45 4.51 
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R50 21.01 23.27 30.27 38.3 45.19 29.87 4.54 

L51 19.94 22.5 31.73 39.87 55.73 30.82 5.23 

R51 20.05 23.08 31.28 38.63 46.94 30.57 4.66 

L52 19.73 22.23 30.63 39.96 48.23 30.17 5.15 

R52 19.62 22.8 30.71 38.16 51.32 30.13 4.56 

L53 20.84 22.32 30.56 40.26 53.15 30.05 5.33 

R53 19.33 22.21 29.95 38.24 46.87 29.61 4.72 

L54 19.93 22.48 31.04 39.65 47.59 30.17 5.20 

R54 21.28 23.09 31.42 39.7 55.3 30.63 5.10 

L55 20.7 22.2 28.32 41.12 49.11 29.35 5.66 

R55 20.35 22.98 31.14 40.43 49.18 30.74 5.59 

L56 20.08 22.55 28.5 40.33 51.17 29.49 5.54 

R56 21.28 23.14 31.58 41.72 57.97 31.21 5.99 

L57 20.33 22.51 28.36 40.5 51.32 29.53 5.53 

R57 22.01 23.3 31.82 41.82 49.76 31.29 5.80 

L58 21.17 22.4 30.11 40.48 48.87 29.83 5.18 

R58 20.13 21.36 30.87 42.18 50.26 30.49 6.27 

L59 17.22 21.7 29.52 39.23 51.82 29.04 5.09 

R59 19.28 20.71 30.73 44.47 62.93 30.45 6.78 

L60 20.67 22.41 30.89 44.11 50.98 30.57 6.20 

R60 20.93 22.07 30.78 43.85 65.2 30.27 6.59 
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Appendix D. NGSIM Error Distribution. This shows the prevalence of errors in each of the six subsets. Negative 

distance headway means a vehicle overtook its leading vehicle’s position (an indication of a crash or, more likely, 

erroneous positioning). Any acceleration over 3.05 m/s2 is considered abnormally high and therefore counted as a 

high acceleration. Low, constant velocities count as the number of vehicles featuring a non-zero velocity at or below 

1.52 m/s coupled with an acceleration of zero. 
 

 

Subset 

Negative Distance Headway  

High Acceleration 

(Entries) 

Low, Constant 

Velocity 

(Vehicles) Vehicles Entries 

I-80A 205 (9.990%) 3,474 (0.275%) 105,293 (8.340%) 8 (0.390%) 

I-80B 319 (17.357%) 10,632 (0.686%) 69,244 (4.468%) 93 (5.065%) 

I-80C 353 (19.721%) 11,650 (0.664%) 78,189 (4.458%) 194 (10.838%) 

US-101A 120 (5.533%) 1,912 (0.162%) 70,785 (5.996%) 13 (0.599%) 

US-101B 139 (6.891%) 1,800 (0.128%) 56,347 (4.016%) 37 (1.834%) 

US-101C 102 (5.326%) 1,968 (0.130%) 60,783 (4.011%) 44 (2.300%) 

 


