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Abstract

 

Like many urbanized lakes within the Twin Cities metro (MN) area, the shoreline of Long Lake 

has been highly developed for residential use. The removal of natural shoreline vegetation during 

residential development has allowed surface runoff to enter the lake without being filtered. 

Shoreline restoration efforts on Long Lake have been proposed, and a field inventory assessment 

of the shoreline was based on three factors: land cover, slope, and soil erodibility. An assessment 

was completed and incorporated into a model to identify areas in most need of restoration. These 

three factors were ranked and added together to determine which areas had low, medium, or high 

potential for the ability to effectively filter chemicals and sediment from runoff before it entered 

the lake. The areas classified as high were defined as areas with little or no potential to filter 

runoff, and were considered ideal for future restoration projects. This paper illustrates how a 

Geographic Information System (GIS) was used to develop a model to locate high priority areas 

using the same three factors listed above using Environmental Systems Research Institute’s 

(ESRI) ArcGIS software suite. The goal in developing this model was to determine its accuracy 

and efficiency such that the protocol could be used for future models to save field data collection 

time and money. A raster layer created from the GIS model compared favorably to the raster 

created from the field data derived model. However, when the land cover and slope factors used 

in the GIS model were compared separately, there were not enough samples from each dataset to 

create an accurate comparison. The GIS model saved time and resources, but additional data may 

be needed for a more precise model.  

 

Introduction 

 

The Minnesota Department of Natural 

Resources (MN DNR) defines the shoreline 

impact zone as the area located between the 

ordinary high water mark of a public water 

and a line parallel to it setback 50 feet 

landward (MN DNR, 2007). A well 

established native vegetated shoreline within 

this zone plays a major role in filtering 

sediment and chemicals from entering the 

surface water of a lake. Altering a shoreline 

by removing natural vegetation for turf grass 

replacement or the building of structures can 

have detrimental effects on water quality, 

terrestrial and aquatic habitat, and increase 

the occurrence of shoreline erosion. The 

conventional ideal of most urban lakeshore 

is the expanse of turf grass mowed all the 

way to the water’s edge, which has led to 

declining lakeshore habitat and water quality 

on many lakes (Henderson et al., 1998). The 

loss of shoreline vegetation in conjunction 

with erodible soils and steep slopes can 

increase erosion and the overland flow of 

chemicals and sediment.   

Long Lake, located in the north 

metro suburb of New Brighton, MN, has 

experienced an increase in development and 

alteration within the shore zone in the past 
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60 years (Figure 1). A series of aerial photos 

dating back to 1940 depicts the increase of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Ramsey County’s location within 

Minnesota and Long Lake’s location within Ramsey 

County.  

 

development surrounding Long Lake 

(Figure 2).  Resource managers believe that 

the increase of this development has 

explicitly led to the overall increase of 

shoreline erosion, low aquatic vegetation 

populations, and high phosphorous levels 

within Long Lake.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Existing survey information and lake 

assessment data shows that Long Lake has 

increased nutrient loading and low water 

clarity. Between the years of 1997 and 2006 

data collected by the Minnesota Pollution 

Control Agency shows phosphorous levels 

in the lake average 103±4 parts per billion 

(ppb) for the northern basin of the lake and 

55 (ppb) for the southern basin of the lake. 

When phosphorus concentrations exceed 40 

or 50 ppb, they can produce algae blooms 

and create turbid water conditions which 

reduce water clarity. Algae are abundant in 

the lake, increasing turbidity, which limits 

aquatic macrophyte plant growth. A 

macrophyte plant survey was conducted in 

June of 2008 to inventory aquatic vegetation 

within Long Lake. Out of the 189 points 

surveyed within the littoral zone, 51 points 

contained aquatic plants (Ramsey 

Conservation District, 2008).     

In late July of 2008, the Ramsey 

Conservation District (RCD) assessed the 

shoreline of Long Lake to determine the 

current shoreline quality with respect to  

shoreline erosion and presence of natural 

vegetative buffers. The assessment consisted 

of using a combination of data collected in 

the field and GIS layers to determine a rank 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. The increase in sprawl and development surrounding the northern half of Long Lake is shown in 1940, 1974, and 

2008 (from left to right).  
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of buffering quality by assessing three 

variables: land cover, slope, and soil type, 

within the shore impact zone of each 

property parcel. Areas around the lake were 

identified as having high, medium, or low, 

potential for filtering surface runoff before it 

entered the lake. Implementing these 

categories allowed natural resource 

managers to determine which areas should 

be a priority in implementing grant funds for 

shoreline restoration projects.  

Due to the size of the lake and the 

number of people needed to conduct the 

study the total time invested in field data 

collection alone was approximately 120 

hours. With shoreline restoration costing 

anywhere from five to ten dollars a square 

foot, much of the financial resources used to 

collect the field data could have been used 

for cost sharing in the actual restoration of 

the shoreline.   

This research project focused on 

using GIS software and datasets, as an 

alternative to using field derived data, to 

create a modeling process that could save 

time and money and still effectively identify 

high priority areas in need of restoration.  To 

develop the model, the same criteria used to 

rank the field data was used to rank the GIS 

data. The ranking systems for the three 

variables (land cover, soil erodibility, and 

slope) were created using subjective 

standards developed by RCD personnel.      

 

Methods 

      

Development of the Slope Grid 

 

The first step in creating the slope grid 

included processing Light Detection and 

Ranging (LIDAR) data to create a Digital 

Elevation Model (DEM). The bare earth 

LIDAR data consisted of a vertical accuracy 

of less than six inches with an average 

spacing of around 12 feet between elevation 

points. The LIDAR data were processed 

using a method developed by the MN DNR. 

Although a quantitative analysis of this 

method has not been established, the MN 

DNR has visually inspected and developed 

this method through years of experience 

(Loesch, 2008). A file geodatabase was 

created, and a feature dataset was added to 

contain the feature classes and LIDAR data 

to be processed. A subset of LIDAR points, 

housed within an ArcGIS SDE as a point 

feature class surrounding the lake were 

selected and imported into a feature dataset. 

An expanded boundary polygon and lake 

boundary polygon were also imported into a 

feature dataset. A terrain dataset, a TIN-

based surface built from the measurements 

of the LIDAR points and boundary polygon 

feature classes, was then created within a 

feature dataset. The LIDAR subset was 

chosen to create the elevation for the TIN, at 

an average of a 12 foot distance between 

each point. The boundary polygon was 

chosen and used as a soft clip Surface 

Feature Type (SFType), and the lake 

boundary was chosen to create a hard value 

fill SFType. For quicker processing, three 

pyramid levels were created to allow for 

quicker drawing of the terrain model image 

when a smaller scale was chosen (Figure 3).  

The Terrain to Raster function was then 

used to convert the terrain to a one meter 

grid. The output data type chosen was 

“float,” the interpolation method chosen was 

“linear,” and the cell size created was 1 

meter (3.2 feet). Using the focal statistics 

tool within the Neighborhood toolset in the 

Spatial Analyst toolbox, the one meter DEM 

was smoothed using a 3 by 3 rectangular cell 

window. To verify the accuracy of the 

DEM, two foot contours were generated 

using the surface analysis function and 

compared to Ramsey County’s survey tested 

contours derived from raw LIDAR points 

(Figure 4). The two foot contours were 

reviewed by Ramsey County GIS personnel 

and were found to accurately depict the 

survey tested contours generated from raw 

LIDAR data. 
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Figure 3. Terrain layer of the study area depicting 

resolution of 3rd pyramid level at 1:15,000 (lower 

left) compared to 1st pyramid level at 1:600 (upper 

right).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 4. A comparison of Ramsey County contours 

(yellow) to contours derived from the terrain model 

(red).   

 

Using the enhanced DEM to create 

two foot contours allowed for smoother lines 

and no gaps in the contour data that 

otherwise existed within the two foot 

contours derived from the raw LIDAR data.   

Using Spatial Analyst, a percent rise 

slope grid was created from the smoothed 

DEM. The slope grid was reclassified where 

≤10:1 (1/10*100) = ≤10 grid cell values, 

>10:1 (1/10*100) - 5:1 (1/5 *100) = >10-20 

grid cell values, and >5:1(1/5 *100) – 

vertical = >20-90 grid cell values. The cell 

groups were then reclassified as follows:    

0-10 = 1, 10-20 = 2 and 20-90 = 3 and 

contours were overlaid for comparison 

(Figure 5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. The reclassification of the slope grid with 

overlain contours for comparison. The slope ranks 

are depicted as Blue = 1(≤ 10:1 slope), Purple = 2 

(>10:1 - 5:1 slope), and Red = 3(>5:1-Vertical slope).  

 

The reclassified slope raster was then 

exported as a raster to a feature and 

intersected with the parcels layer so that the 

dominant slope rank could be identified 

within each parcel. A field was added to the 

slope layer and total square meters were 

calculated for each rank within the 

corresponding parcel. The slope field was 

then imported into Microsoft Access where 

a query was run to determine which 

classification of 1 (0-10), 2 (10-20) or 3 (20-

90) was dominant within each parcel. The 

rank representing the slope for each parcel 

was selected and added to a final slope rank 

field. The slope feature was then converted 

0 250125 Meters
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back to a raster so that it could be added to 

the soils and land cover grid. 

 

Development of the Land Cover Grid  

 

The land cover data was created using parcel 

boundaries and six inch resolution aerial 

imagery of the lake and surrounding area. 

The parcel boundaries were imported into a 

file geodatabase containing coded value 

domains, which represented the land cover 

rank values, of 1 = Native Vegetation, 2 = 

Weedy Vegetation, 3 = Turf Grass, 4 = Bare 

Soil, and 5 = Impervious Surface. The land 

cover was ranked from lowest to highest 

depending on the cover type which had the 

most to least potential to filter runoff. At a 

scale no larger than 1:300 the aerial imagery 

was interpreted and a dominant land cover 

was chosen for each parcel. The land cover 

layer was then exported from a feature to a 

raster using the rank classification as the 

grid cell ID. 

 

Development of the Soils Grid  

 

To determine the soil types within each 

parcel surrounding the lake, the NRCS Soil 

Survey Geographic Database (SSURGO) 

spatial and tabular data for Ramsey County 

were downloaded and appended together. 

The soils layer was then intersected with the 

parcel layer and a soils rank field was added 

to the attribute table. This field was 

populated using the following 

reclassification schema: sand (K-Factor ≤ 

0.2) = 3, loam (K-factor 0.2 < 0.28) = 2, or 

clay (K-factor ≥ 0.28) = 1. The higher the K-

factor, the greater the soils type was prone to 

erosion. The soils layer was then exported 

from a feature to a raster using the rank 

classification as the grid ID. There were 

seven different soil types that surrounded 

Long Lake. The majority of the soils had a 

K-factor of 0.17, which classified these 

areas with a rank of three. A small area of 

soils located in the northeast corner 

surrounding the lake was made up of Chaska 

silt loam, and therefore had a K-factor of 

0.28. The areas that fell within this soil type 

were ranked as a two. 

 

Grid Overlay 

 

To create the final raster layer, the soils, 

land cover, and slope grids were added 

together and reclassified. The three layers 

were added together using the Raster 

Calculator to produce a grid with values 

ranging from 5-10. These values were then 

reclassified using the Raster Calculator to 

the following: 5-6 = 1 (low), 7-8 = 2 

(medium) and 9-10 = 3 (high).   

To determine if the model located 

the same high priority areas as the field 

derived model, the Spatial Analyst extension 

was used to reclassify and overlay the two 

grids. Grid values of 1 and 2 within the field 

model were classified as zero and values of 

3 were classified as 1. In the GIS model, 

grid values of 1 and 2 were also classified as 

zero, but values of 3 were classified as 2. 

The values were classified in this schema so 

that when the two grids were added together 

the final grid would consist of 0, 1, 2, or 3 

cell values. This was used to determine if 

the models matched (cell values 0 or 3) or if 

the GIS model (cell value 2) did not 

correspond with the Field model (cell value 

1), or vice versa.  

The two grids were added together to 

create a final grid in which low/medium 

areas consisted of a shore zone area capable 

of filtering runoff and high areas, which 

consisted of a shore zone that provided little 

buffering potential for the filtering of runoff.   

The final grid consisted of the 

following classification: 0 = areas of 

low/medium priority for both models, 1 = 

areas of low/medium in the GIS model and 

high in the field model, 2 = areas of 

low/medium in the field model and high in 

the GIS model, and 3 = high priority areas in 

both models (Figure 6). This raster was then  
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converted to a feature layer so that the 

difference in areas could be calculated.   

To examine the variables within the 

two models, contingency tables were created 

for both the land cover and slope variables 

(Table 1) so tests could be conducted to 

determine relationships between variables 

within the models. The numbers within the 

contingency tables consisted of frequency of 

observations in each category for land cover 

and slope. For example, there were 96 

predicted cases of weedy vegetation within 

the GIS model that matched the observed 

data within the field model. The data shown 

in the contingency tables were entered into  

the statistics program JMP 7. Within this 

program, the predicted (GIS data) were 

entered into the Y axis and the observed 

(field data) were entered into the X axis. A 

nominal logistic model was used to analyze 

the paired observed data (field data) to the 

expected data (GIS data) for the land cover 

and slope variables separately. The nominal 

logistics test was chosen in the personality 

field and the model was run. The model 

generated the chi-square statistic and error 

probability between the predicted and 

observed datasets.    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Contingency tables for slope and land cover 

variables showing the frequencies of factors within 

each model. The soils data for both models were 

taken from the same layer so there was no variation 

for comparison.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results 

 

The overall findings within the shore zone 

found that of the approximately 115,215  

total square meters surveyed, 37,397 were 

classified as low by the GIS model, 66,617 

were classified as medium and 11,202 were 

classified as high. A comparison of these 

numbers to the field data model findings is 

illustrated in Table 2. Of the 115,216 total 

square meters surveyed, 7,850 square meters  

Figure 6. The field model (left) was added to the GIS model (center) to create the final grid model 

(right), depicting areas where the two models did not match.  
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did not coincide between the two grids. 

Table 3 illustrates the difference between the 

reclassified numbers. Grid codes 0 and 3 

were a match between the two grids and 

values 1 and 2 represented the differences 

calculated between the two grids.   
 

Table 2. The difference is shown in square meters of 

the low, medium, and high classified areas between 

the two models.   

 

 
Table 3. The areas that coincided (0, 3) and the areas 

that did not match (1, 2) between the two models.  

 

 

 

 

 

 

The areas of difference were 

examined further to determine which factors 

(land cover, slope, or both) were involved in 

creating a variation between the two grids 

(Table 4). The soils layer did not need to be 

compared since the GIS layer used to create 

the soils rank was the same for both the field 

and GIS models.  The results generated from 

the JMP 7 software showed a P-value of 

<.001 for both the slope and land cover data 

tested. The chi-square statistic for the land 

cover and slope data tests were 282 and 61 

respectively.  The degrees of freedom, a 

measure of the independent information 

used in the calculation, was calculated as 

follows (Gotelli and Ellsion, 2004):  

 

df = υ = (number of rows -1) x (number of 

columns -1). 

  

This resulted in degrees of freedom of 4 for 

the slope data and a 9 for the land cover 

data. Mosaic plots were also generated 

Table 4. The area, shown in square meters, of the 

factors that did not coincide between the two models 

is shown below.  

 

 

 

 

 

 

 

 

from the JMP 7 software. The mosaic plots 

depicted values in the contingency table’s 

cells as tiles to better visualize the datasets 

(Figure 7). The illustrations show the 

relationship between the observed (field 

derived) data (X-axis) to the predicted (GIS 

derived) data (Y-axis). The tiles sizes are 

proportional to the frequency in the dataset 

(Gotelli and Ellsion, 2004). For example, 

within the land cover table (top), the red tile, 

with horizontal axis label “2”, is a visual 

representation of how many incidences 

weedy vegetation was recorded within each 

parcel in the field (observed axis) and also 

recorded within that same parcel using aerial 

photo interpretation for the GIS model 

(predicted axis). The green tile in column 

“2” represents how many times weedy 

vegetation was observed in the field, but 

mistaken for turf grass during aerial photo 

interpretation for the GIS land cover grid. 

The brown tile in column “2” represents the 

frequency of observations where weedy 

vegetation was observed in the field, but was 

mistaken for impervious surface during 

aerial photo interpretation. Similarly, 

column “3” corresponds to turf grass; 

column “4” to bare soil; and column “5” to 

impervious surface (brown tile).    

Similar to the land cover table the 

slope table (bottom) depicts the frequency in 

red where ≤ 10:1 slope (value 1 along the 

observed and predicted axis), was recorded 

both out in the field and in the LIDAR 

derived grid, within the same spatial 

location. Concurrently, >10:1 - 5:1 (value 2) 

is represented as green, and >5:1 – vertical  
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(value 3) is represented by blue to represent 

the incidences between the two grids.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Contingency analysis of predicted (Y-GIS 

model) by observed (X-field model) mosaic plots for 

the land cover (top) and slope (bottom) variables.    

 

Discussion  

 

With 93% of the GIS model matching the 

field derived model it can be suggested that 

the methods used to create the GIS model 

could be used to determine future shorelines 

in need of restoration. However, when the 

variables were reclassified and lumped into 

new categories of low, medium, and high, 

the association between the data results may 

not have been the same as if each variable of 

land cover and slope were compared 

separately (Reynolds, 1984). To ensure there 

was a relationship between the two 

variables, the chi-square test for nominal 

data was utilized and produced results that 

revealed land cover and slope were closely 

related to the observed field data. The 

contingency tables used to run these 

analyses were used to test the null 

hypothesis that the variables were not 

associated with each other (Gotelli and 

Ellsion, 2004). 

 The null hypothesis that there was no 

relationship between the paired observed 

data (field data) to the expected data (GIS 

data) for the land cover and slope variables 

was rejected. Both of the models yielded 

chi-square statistics that were highly 

significant (P<.0001), meaning the observed 

and predicted values were closely related. 

Although the P-value was highly significant 

for both datasets, the accuracy may have 

been skewed because more than 20% of the 

predicted versus observed table cells had 

counts less than 5. Because more than 20% 

of the table cells had counts less than 5, 

there were not enough observations within 

each category, which could make the chi-

square test statistic suspect. To create a 

stronger relationship between the datasets 

the number of observations should be 

increased such that the number of cells in 

the predicted versus observed table with 

counts less than 5 occurs in less than 20% of 

all the cells. Ideally, collecting more data 

from more diverse areas would increase the 

number of observations between datasets 

such that the less than 20% rule for 

application of the chi-square statistic is met. 

To increase the number of observations, it is 

suggested that more field and GIS data be 

inventoried on different lakes and added to 

the model for comparison.  

The overall goal of this project was 

to develop a time and cost efficient method 

used to identify areas of concern 
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surrounding bodies of water surrounded by 

development. The idea behind this model 

was to save funding by reducing field data 

collection so money saved could be invested 

into implementing restoration projects 

within high priority areas. With time 

invested in field data collection totaling 120 

hours versus the time to go through the 

procedures to develop the GIS model 

(approximately 40 hours), the process 

proved to be a time and cost efficient 

measure.     

  

Conclusion 

 

This research outlined the methods used to 

create a GIS based model to identify areas 

prone to little or no buffering potential for 

filtering runoff entering Long Lake. The 

three variables (land cover, slope, and soils) 

used to create the model were ranked 

according to factors that could lead to the 

increase of runoff. Although this study was 

able to locate areas that were susceptible to 

accelerated runoff and erosion by combining 

the factors of steep slope, erodible soils, and 

lack of stable vegetation, the accuracy of the 

model developed is questionable. Although 

overlaying the field and GIS derived grids 

accounted for accurate results, assessing the 

variables that produced these models 

independently proved to have a strong 

relationship only if the number of cells 

within the observed versus predicted tables, 

with counts less than 5, could be 

overlooked. The limiting number of 

observations within the comparative 

contingency tables may have led to 

inaccurate P-values amongst the datasets. If 

future data is added into the tables, 

increasing the number of observations, the 

chi-square statistics obtained for the model 

predictions can be more confidently 

interpreted. The time invested in developing 

the procedure used to create the model was 

minimal compared to the time invested to 

collect and create data from the field. If 

additional data is incorporated into the 

model and proven to have a strong 

relationship, resource managers may be able 

to use this procedure to apply the model to 

other highly developed lakes within the 

Twin Cities metro area, saving time and 

resources. 
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