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Abstract 

 

Global population is on the rise and urban population density is growing. Urban areas are 

developing at a rapid pace, especially in the construction of new housing. Land is being 

developed at the cost of forest cover which is causing a reduction of the environmental 

benefits that urban tree canopies provide. In this project, object-based image analysis (OBIA) 

is used to conduct a temporal urban forest canopy change assessment in Maple Grove, MN. 

The OBIA methodology in this project focuses on using spatial, spectral, and textural image 

features in place of LiDAR data to classify forest cover. Image segmentation and 

classification was done using Trimble’s eCognition Developer 9.5 software. Results of the 

project found a 1.26% increase in overall tree canopy cover over the assessment period. 

Accuracy of the project was investigated using an error matrix and 100 randomly generated 

checkpoints for each of the two classes in each classification year, totaling 400 points. The 

overall classification accuracy was determined to be 85.5% for 2008 and 89.5% for 2017. 

Overall, the results show accurate classification of urban tree canopy relative to other studies 

conducted in the OBIA tree cover field. This project provides results for effective, low cost, 

and routine canopy assessments that community stakeholders can use to proactively monitor 

canopy health and preserve their environmental service benefits for the community.       

                                                                                                                                        

Introduction 

 

Background 

 

As the world population continues to 

grow, urban expansion and development 

will be a major force of change to the 

natural landscapes of cities. Urbanized 

land in the lower 48 states is expected to 

more than double in size from 67.6 million 

acres to 163.1 million acres by 2050 

(Nowak and Greenfield, 2018). One 

inevitable side effect of urban expansion is 

change to the urban tree canopy. It is 

estimated that urban tree loss costs society 

conservatively $100 million annually due 

to loss of service benefits (Nowak and 

Greenfield, 2018). Urban forests provide 

service benefits including: moderating 

climate, reducing building energy usage, 

mitigating water runoff, and enhancing 

human well-being (Nowak and Dwyer, 

2007 as cited in Nowak and Greenfield, 

2018). Even with all the benefits trees 

provide, the continental United States is 

losing urban forest cover at a rate of 0.9% 

which is the equivalent of four million 

trees per year. This loss is a consequence 

of land development, storms, and old age 

(Nowak and Greenfield, 2012).  

Development plays a large role in 

urban tree canopy changes. Urban areas 

currently account for over 50% of the 

world’s population and will likely absorb a 
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large part of future population increases. 

(United Nations, 2010 as cited in Lin, 

Meyers, and Barnett, 2015). Residential 

areas make up a larger percentage of many 

urban areas overall land area and therefore 

play an important role urban ecosystems 

(Lee, Longcore, Rich, and Wilson, 2017). 

Green cover loss in residential 

neighborhoods due to single family 

development is one of the biggest 

contributors to urban forest loss across 

metropolitan areas (Lee et al., 2017). As a 

city’s population grows, new development 

quickly follows in the form of new and 

larger homes, apartments, roads, retail 

stores, parking lots, and other impervious 

elements, often at the cost of natural green 

space and tree cover.  

Nowak and Greenfield (2018) 

found that between 2009 and 2014 

impervious cover from new development 

grew by 0.6% or 167,000 acres annually. 

Based on the results of the Nowak and 

Greenfield (2012) study, new development 

accounted for 71% of the new impervious 

areas added to urban areas across the 

USA. 

 

Project Value and Importance 

 

With all of the pressure new development 

places on the urban forest canopy, it is 

important that managers and stakeholders 

regularly assess how it is being affected. 

Especially as population density increases 

it is important to monitor how green 

infrastructure and ecosystem services are 

affected (United Nations, 2010 as cited in 

Lin, Meyers, and Barnett, 2015). Because 

of its service benefit value, tree canopy 

cover is an important part of a 

community’s green infrastructure, and 

understanding how it is changing can help 

communities maintain or improve their 

service benefits. Tree cover assessments 

can be used to determine direction and rate 

of urban forest and impervious cover 

changes (Nowak and Greenfield, 2018).   

Historically tree cover assessments 

were conducted by sending people out into 

the field to physically count and classify 

trees. The process of manually counting 

trees is extremely labor intensive and 

costly for a city to conduct on a regular 

basis. However, there is a need to assess 

tree canopy changes overtime to better 

understand the influences and impacts of 

canopy changes from urban development. 

New methods of remote sensing allow for 

more accurate and cost-effective 

assessments of urban tree canopies over 

time (Guo, Morgenroth, Conway, and Xu, 

2019). These new methods are made 

possible using geospatial software and the 

growing amount of high-quality remote 

sensing data.  

 

Object-Based Image Analysis 

Classification 

 

One specific type of analysis that is used 

for conducting temporal tree canopy 

change is object-based image analysis 

(OBIA). OBIA is a preferred method for 

land cover classification over pixel-based 

classification. OBIA allows for large scale 

classification of buildings and ground 

cover (Ossola and Hopton, 2018). OBIA is 

a process in which like pixels within an 

image are grouped together into an object 

based on specified characteristics. These 

objects can then be overlaid with other 

datasets to conduct an accurate and 

automated classification of an image.  

A dataset that is typically used in 

OBIA is Light Detection and Ranging 

(LiDAR) data. This type of data is 

beneficial because of its ability to measure 

elevation of the ground terrain. However, 

LiDAR data for a project area can be 

difficult to obtain due to its high collection 

cost for city and state scale projects. In 
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many cases, there is not LiDAR data 

available within the timeframe required by 

a tree cover analysis.  

In place of LiDAR data, other 

image properties can be used to classify 

tree cover, including spectral, spatial, and 

textural features. According to Haralick, 

Shaunmugam, and Dinstein (1973), 

spectral, textural, and contextual are three 

fundamental elements in human 

interpretation of imagery. These three 

features are used as part of the OBIA 

methodology to classify city scale 

imagery. Being able to classify large 

datasets, such as an entire city or county in 

relatively short periods of time can allow 

communities all over the world to conduct 

temporal analysis through OBIA.  

 

Project Area 

 

For the purposes of this project, the City of 

Maple Grove, MN (Figure 1) was chosen 

because of its suburban location within the 

Twin Cities Metropolitan Area (TCMA). 

The TCMA is the largest urban area within 

the state of Minnesota with the cities of 

Minneapolis and Saint Paul at its center. 

Maple Grove is located approximately 11 

miles from downtown Minneapolis. In 

addition to it being a suburban city, Maple 

Grove has a 20-year trend of increasing 

population and residential development.  

According to the Community 

Profile for Maple Grove (2019), Maple 

Grove has gone from a population of 

50,365 in the year 2000 to 66,903 people 

in 2018. The population is expected to 

increase to 89,700 by the year 2040. The 

number of housing units within the city 

has increased from about 17,700 in 2000 

to over 26,500 units in 2018. The city has 

a total area of 35 square miles or 22,429 

acres. These characteristics are all 

consistent with areas that have sustained 

high urban tree cover changes as described 

by literature. Based on the population and 

housing increases that Maple Grove has 

experienced in the past 20 years, it is 

important that its tree canopy is measured 

so that community leaders can understand 

if their development and forestry policies 

have been effective at preserving the 

service benefits of the tree cover over 

time.  

 

 
Figure 1. Location of the City of Maple Grove 

within the State of Minnesota. Maple Grove is a 

suburb of the Minneapolis and Saint Paul 

Metropolitan Area. Maple Grove, MN is 

approximately 11 miles from downtown 

Minneapolis. 
 

Project Overview 

 

This project explores the changes to tree 

canopy cover over 10 years within the 

growing suburban city of Maple Grove, 

MN. An OBIA approach for classification 

of high-resolution aerial imagery is used in 

this project. This project tests the 

classification accuracy of using a 

combination of spectral, spatial, and 

textural properties of the image as a 

substitute for the traditional LiDAR based 

dataset. The results of this project not only 

explore the changes in tree canopy for 

Maple Grove, but also whether this 
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method is a viable option for conducting 

regular and accurate assessments in urban 

tree canopy change.  

 

Methods 

 

The methodology below outlines a rule set 

for conducting an OBIA of urban tree 

canopy cover with Trimble eCognition 

Developer 9.5 software using freely 

acquired National Agriculture Imagery 

Program images (NAIP). This also 

includes an assessment of the accuracy of 

the spectral, spatial, and textural image 

features used in tree canopy classification.   

 

Data 

 

This project used two sets of US 

Department of Agriculture (USDA) NAIP 

multispectral images as the primary source 

for deriving classification data. NAIP 

imagery was chosen because of its 1-meter 

per pixel resolution which will aide in the 

detection of finer image details such as 

individual trees. The imagery was 

downloaded from the United States 

Geologic Survey (USGS) Earth Explorer 

website. A 1.5 square mile sample of the 

2017 NAIP imagery in pictured in Figure 

2.  

 

 
Figure 2. A sample section of the 2017 NAIP 

imagery pre-segmentation. This image represents 

approximately 1.5 square miles of area.  

The goal of the project is to assess urban 

canopy cover change over a 10-year 

period. Due to the availability and 

frequency of NAIP imagery, the available 

data that met the timeframe requirements 

of this project was from July 2008 and 

August 2017. Imagery for both years 

consisted of six, 4-band multispectral 

GeoTIFF images each with a 1-meter 

resolution. Because this project focuses on 

tree canopy change, it is important that the 

imagery used includes a near infrared band 

(NIR) which can be used to identify 

vegetated areas. After the images were 

downloaded, Esri ArcGIS Pro was used to 

create one Mosaic Dataset for each year. 

Each mosaic was then exported to a raster 

file and clipped to the Maple Grove, MN 

city boundary. In addition to NAIP 

imagery, the Minnesota Department of 

Natural Resources 2012 Hydrology 

Dataset was downloaded from the 

Minnesota Geospatial Commons for use as 

reference data during classification of the 

images.  

 

Object-Based Image Analysis  

 

An Object-based image analysis (OBIA) 

method was used for this project. OBIA 

uses software to segment an image into 

larger groupings of pixels, or objects, 

based on algorithms in the software that 

compare spectral and spatial 

characteristics of each pixel.  

For this project Trimble’s 

eCognition Developer 9.5 software was 

used to conduct the OBIA. eCognition 

allows the user to create a structured 

iterative workflow for analysis of multiple 

types of datasets and can create 

customized rulesets for image 

segmentation, classification and 

refinement within the software (McGinty, 

McGinty, and Ramsey, 2017). Within 

eCognition the images are segmented 
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based on the desired segmentation 

algorithm and user-defined settings for the 

specific algorithm. In this project, 

Multiresolution Segmentation was chosen 

as the optimal algorithm based on similar 

methods in previous studies (Zhou and 

Troy, 2008; Walker and Briggs, 2007; 

Moskal, Styers, and Halabisky, 2011; 

McGinty et al., 2017). Multiresolution 

Segmentation starts with individual pixels 

and merges neighboring homogeneous 

pixels together into objects in a bottom up 

process over several iterations. Typically, 

OBIA uses spectral and/or textural 

characteristics of pixels to determine their 

similarity (McGinty et al., 2017). This 

process runs until the smallest difference 

in homogeneity in adjacent objects 

exceeds the scale parameter set by the user 

in which case the process stops, and the 

result is a segmented image (Karakis, 

Marangoz, and Buyuksalih, 2004). The 

other user defined settings within 

eCognition’s segmentation process include 

image layer weight, shape and 

compactness. Weighting the shape setting 

higher decreases the influence color has on 

the segmentation process. By weighting 

compactness higher there is more potential 

for the resulting objects to be more 

compact in size (eCognition Developer 

9.5). This is important when trying to 

detect small groupings of trees within the 

image.  

 Suitable settings for scale, shape, 

compactness, and image layer weight are 

adjusted and evaluated by the user to 

determine the best fit for the images 

(McGinty et al., 2017). Previous OBIA 

forest cover studies have used various 

scale, shape, and compactness settings. 

Scale settings ranged from 10 - 30, shape 

settings ranged from 0.0 - 0.3, and 

compactness from 0.5-0.8 (Moskal et al., 

2011; Zhou and Troy, 2009; Walker and 

Briggs, 2007). The multiresolution  

segmentation settings for this project are 

detailed in Table 1. The settings in Table 1 

resulted in 593,440 objects for the 2017 

imagery and 604,485 objects for the 2008 

NAIP imagery. A 1.5 square mile sample 

of the segmentation results are pictured in 

Figure 3.  

 
Table 1. eCognition 9.5 multiresolution 

segmentation settings. Settings are controlled by 

the user. Scale determines the threshold at which 

the segmentation process should stop. Shape 

determines how the algorithm uses color to create 

objects. Compactness controls the size of the 

objects. Layer weights can be used to add more 

preference to one band or thematic layer over 

another.   
Level 1 Segmentation 

Scale 20 

Shape 0.2 

Compactness 0.8 

Layer Weights Red =1 

Green = 1 

Blue = 1 

NIR = 1 

 

 

 
Figure 3. A sample of the objects created with the 

NAIP 2017 imagery from the segmentation process 

in Trimble eCognition Developer 9.5. This image 

represents approximately 1.5 square miles.  

 

Classification   

 

After the image has been segmented the 

objects can then be classified based on the 

specific textural and spatial characteristics 

of each object. The following workflow in 

Figure 4 shows the rule set used to classify 
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both the 2008 and 2017 imagery. Before 

the classification of image objects was 

done, a Normalized Difference Vegetation 

Index (NDVI) was generated for each set 

of imagery. The NDVI is calculated by: 

 

        (NIR Band – Red Band)  

NDVI =    

          (NIR Band + Red Band) 

 

The first step in classification is to 

separate objects in shadowed areas within 

the image from non-shadowed. This is 

done because of the different spectral 

properties that similar features have when 

they are in shaded areas. Objects are 

separated based on brightness, defined as 

the channel mean value of the green, red, 

and NIR layers (Zhou and Troy, 2009). 

Previous studies using eCognition have a 

range of threshold values for separating 

shadow and non-shadow objects. In 

Walker and Briggs (2007), a threshold of 

greater than 0.12 on a 0 to 1 scale was 

used to determine if an object was non-

shadow. Zhou and Troy (2008) used a 

value 30 to define shadow and non-

shadow and a value of 65 was used by 

Platt and Schoennagel (2009) to represent 

“dark forest.” Average brightness amongst 

images may vary so thresholds can be 

adjusted slightly up or downward in an 

effort to visually match tree cover within 

the image (Platt and Schonnagel, 2009). 

For the purposes of this project a 

brightness threshold of 60 was selected.  

 Next, non-shadowed and shadowed 

objects were divided into vegetation and 

non-vegetation. The objects with a NDVI 

value <0 were immediately categorized as 

non-vegetation (Zhou and Troy, 2009). 

Based on the threshold of 0.08 used Zhou 

and Troy (2008) and, in an effort to 

eliminate non-vegetation objects that 

might have had a minimal positive NDVI 

value, a threshold of >0.08 was used to 

classify objects as vegetation.  

After categorizing objects as 

vegetation further criteria are needed to 

separate tree canopy from other types of 

ground cover. This project used several 

textural and spatial characteristics of 

objects to classify them as trees. Texture 

was chosen as a primary classification 

feature because Haralick et al. (1973) 

identified it as an important feature when 

classifying objects within imagery. 

Texture is one of the most important 

spatial features of an aerial image and it is 

a distinctive feature of land cover classes 

(Kupidura, 2019; Tuominen and 

Pekkarienen., 2004). Texture is the spatial 

relationship that gray-levels of the image 

pixels have to one another (Haralick et al., 

1973). Image texture is measured using a 

Gray Level Co-Occurrence Matrix 

(GLCM). Gadkari (2004) quotes Haralick 

et al. (1973) stating GLCM is “a two-

dimensional histogram of gray levels for a 

pair of pixels, which are separated by a 

fixed spatial relationship.” Texture, 

specifically contrast, was chosen as the 

primary classifier in Stage 1 of the trees or 

non-trees argument because there is a 

moderate correlation between forest 

attributes and the GLCM contrast and 

entropy features (Tuominen and 

Pekkarienen, 2004).   

Contrast is the difference between 

the highest and lowest gray levels for a set 

of contiguous pixels. It measures the local 

variations in an image (Gadkari, 2004). 

Trees vary in height, color, shape, and 

reflectivity, and in theory should have 

higher degrees of variation in their GLCM 

values relative to other more homogeneous 

ground cover types. In Stage 2 of the tree 

canopy classification rule set, both texture 

and spatial features were used for further 

refinement of the trees and non-tree 

categories. 
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GLCM Entropy, Dissimilarity, and 

Homogeneity were all chosen as 

parameters in the classification process. 

Entropy measures the disorder or 

complexity in an image; complex textures 

tend to have higher entropy levels when 

compared to more homogeneous textures 

(Gadkari, 2004). Again, because of its 

variation in spectral and hyperspectral 

features, tree cover should present as 

higher entropy pixels relative to other 

types of ground cover. Dissimilarity is a 

feature similar to contrast except that it 

uses a different linear pattern of the 

GLCM. Homogeneity is inversely 

correlated to contrast. The smaller the 

difference in gray tones, the higher the 

homogeneity value (Gadkari, 2004).  

In addition to texture, length/width 

of the object helped to remove long fence 

lines and grass medians. Proximity to 

other classes, relative border to other 

classes, and maximum difference were all 

used to further improve accuracy of 

classifications (Moskal et al., 2011).  

Once all the objects were classified 

according to the ruleset, objects classified 

as trees were merged. After the objects 

were merged, the Pixel-Based Object 

Resizing (PBOR) function was used to 

“smooth” the edges of the classified 

object. The PBOR function grows and 

shrinks the edges of the object by filling in 

or subtracting individual pixels along the 

border which results in a “smooth” 

boundary and improves the shape of the 

object when exported to a map. The result 

of the OBIA using the above ruleset within 

eCognition is pictured in Figure 5.  

 

Accuracy Assessment  

 

The accuracy of the canopy cover 

classification was measured using a 

stratified random sampling method. To 

assess accuracy the classified tree canopy 

 
Figure 5. Forest canopy classification results from 

2017 NAIP Imagery using eCognition 

multiresolution segmentation. Area represents 

approximately 1.5 square miles.   

 

data was compared to visually interpreted 

data.  Accuracy assessments compare 

classified land cover to other verification 

data, which can include field samples or 

image interpretation (Aronoff, 2005 as 

cited in McGinty et al., 2017). A classified 

forest cover polygon layer was exported 

from eCognition Developer 9.5 for each 

project year and opened in ESRI ArcPro. 

In order to effectively measure accuracy, 

both canopy and non-canopy 

classifications must be assessed. A 

polygon feature was created for the 

entirety of Maple Grove, and then the 

Erase tool was used to remove the area 

classified as tree canopy from the Maple 

Grove polygon.  

The result was a “non-canopy” 

classified polygon. Based on Congalton 

(1991), a minimum sample size of 50 

points per class is needed to assess 

accuracy of land cover classification. For 

this project 100 points were used for each 

class for a total of 200 points for each 

project year. Additional points were used 

because of the large scale of the project 

and because only two classes were used. 

The Create Random Points tool was used 

to generate points within each class for 

both datasets. Visual interpretation of each 
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point was conducted using the 2008 and 

2017 imagery.    

 An error matrix was created to 

assess the overall accuracy of the OBIA 

classification process. For each random 

point the classification derived from the 

eCognition classification as well as the 

results of the visual interpretation of the 

NAIP imagery were summarized and 

placed into an error matrix. The results of 

the error matrix provide key metrics for 

assessing the overall accuracy of the data. 

These metrics include user’s error,  

producer’s error, overall accuracy, and 

overall kappa coefficient.  

 

Results 

 

The results of this project will focus on the 

overall change in tree canopy cover in 

Maple Grove, MN and the accuracy of the 

OBIA method used to classify land cover 

as either tree canopy or non-canopy 

 

Canopy Cover Change 

 

Overall change to canopy cover was 

assessed by measuring the total area of the  

canopy cover and non-canopy cover 

polygons derived from the OBIA  

  

 

 

classification process. Figure 6 shows final 

tree canopy cover of the entire project area  

for 2008 and 2017. The pixel count of 

each classification polygon was used to 

determine total area. Each pixel within the 

polygon represents one square meter, 

based on the original NAIP image  

resolution. The pixel area was then 

converted to acres and square miles for  

comparison at varying scales. As shown in 

Table 2, total canopy cover in 2008 was 

calculated at 4,990.52 acres or 22.31% of  

the overall area. Total canopy cover in  

2017 was calculated at 5,053.52 acres or  

22.47% of the city’s overall area. The 

boundary Maple Grove remained 

unchanged between 2008 and 2017. The 

overall area of the 2008 and 2017 tree 

canopy remain relatively consistent over 

the 9- year period. The net change was a 

positive 1.26% between 2008 and 2017  

with an increase in canopy cover of 63 

acres (Table 3).  

 

Accuracy Assessment 

 

The results of the accuracy assessment are 

based on the error matrices in Tables 4 and 

5. The key metrics in the error  

matrices are producer’s accuracy, user’s  

 

 

Total Area Based on Classification Type 

  Pixel Area (m2) Acres Miles2  Total Area (%) 

2008 Canopy Cover 20,195,920  4,990.52  7.80  22.31% 

2008 Non-Canopy 70,318,404  17,376.38  27.15  77.69% 

2017 Canopy Cover 20,450,864  5,053.52  7.90  22.47% 

2017 Non-Canopy 70,573,922  17,439.52  27.25  77.53% 

Table 2. 2008 and 2017 total area for canopy cover and non-canopy cover derived from OBIA classification 

using 1-meter NAIP imagery.                         
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Table 3. Overall tree canopy change in Maple 

Grove, MN between 2008 and 2017. 

 

Table 4. Error Matrix for OBIA classification of 

2008 NAIP imagery using Trimble eCognition  

Developer 9.5. 

 
Table 5. Error Matrix for OBIA classification of 

2017 NAIP imagery using Trimble eCognition  

Developer 9.5. 

 

accuracy, overall accuracy, and kappa  

coefficient. Producer’s accuracy reflects 

the probability that a pixel from the  

reference data is properly classified.  

User’s accuracy is a measure of the 

reliability that a pixel in the classified data 

was correctly classified (Congalton, 1991). 

The other metric produced by the error 

matrix in the kappa coefficient. The 

overall kappa coefficient estimates how 

well classes are represented in the 

classification, and the actual, or interpreted 

ground data (Conchedda, Durieux, and 

Mayaux, 2008). The higher the kappa 

coefficient the more agreement there is 

between the classification and the actual 

ground cover.   

 Overall accuracy is a calculation of 

the total correctly classified points 

compared to the total number of points 

classified. In this project the overall 

accuracy for the 2008 OBIA classification 

was 85.5% and the kappa coefficient was 

0.71. The 2008 tree canopy classification 

had a producer’s accuracy of 89.01% and 

a user’s accuracy of 81%. Producer’s  

accuracy for non-canopy classification  

was 82.57% and user’s accuracy was 90%. 

This shows that the method used in the  

OBIA classification was more reliable at  

classifying non-canopy versus canopy 

ground cover.  

The results of the 2017 OBIA  

classification show an overall accuracy of 

89.50% and a kappa coefficient of 0.79. 

The producer’s and user’s accuracy for the  

2017 tree canopy classification 92.47% 

and 86%. Non-canopy classification had a 

producer’s accuracy of 86.92% and a 

user’s accuracy of 93%. In the case of 

2017 image classification, the OBIA 

method appears to have a good ability to 

properly classify ground cover in NAIP 

imagery. Overall, the 2017 imagery had a 

higher level of classification accuracy than 

the 2008 imagery.  

 

Discussion  

 

The three main objectives of this project 

were to: (1) measure the reliability of 

OBIA as an effective method of 

identifying urban tree canopies in 

Canopy Cover Change 2008-2017 

Meters2 Acres Miles2 % Change 

254,943 63.00 0.10 1.26% 

2008 Canopy Classification 

Classification 

Reference User's 

Canopy No-

Canopy 
Accuracy 

Canopy 81 19 81.00% 

No-Canopy 10 90 90.00% 

Producer's 

Accuracy 
89.01% 82.57% 

 

Overall 

Accuracy 

85.50%     

Overall 

Kappa 

0.71     

2017 Canopy Classification 

Classification 

Reference User's 

Canopy No-

canopy 

Accuracy 

Canopy 86 14 86.00% 

No-Canopy 7 93 93.00% 

Producer's 

Accuracy 
92.47% 86.92% 

 

Overall 

Accuracy 

89.50% 
  

Overall 

Kappa 

0.79 
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metropolitan areas; (2) determine if OBIA 

can be effective if no temporal LiDAR 

data is available for the project area; (3) 

determine if the project area saw a loss in 

canopy cover between 2008 and 2017 due 

to the increase in development from 

population growth.  

  

OBIA for Urban Canopy Assessments 

 

Utilizing an OBIA process to accurately 

classify and measure urban canopy cover 

shows good promise based on the results 

of this project. Overall classification 

accuracy for 2008 and 2017 achieved 

85.5% and 89.5% and kappa coefficients 

of 0.71 and 0.79. These results are within 

the range of expected results based on 

similar studies using OBIA to classify 

ground cover without LiDAR data. 

Moskal et al. (2011) achieved an overall 

accuracy in an OBIA of NAIP imagery of 

79.7%, a kappa coefficient equal to 0.74, 

user’s and producer’s accuracy for tree 

cover of 80.5% and 93.9%. Walker and 

Briggs (2007) had an overall accuracy of 

81.0%, a kappa coefficient of 0.63, tree 

cover user’s accuracy of 96.0%, and a 

producer’s accuracy of 76.0% for an 

OBIA of urban forests in Phoenix, AZ. 

McGinty et al. (2017) used OBIA to map 

riparian land cover and achieved an 

overall accuracy of 94.43% and 0.9486 

kappa coefficient. When mapping change 

in mangrove ecosystems Conchedda et al. 

(2008) achieved an overall accuracy of 

85.7% and a kappa coefficient of 0.83. 

The tree cover classification in that study 

produced a user’s accuracy of 97.4% and a 

producer’s accuracy of 99.5%. When the 

results of other studies are compared to 

this project for Maple Grove, MN, the 

accuracy of the tree canopy classification 

is slightly higher than other studies 

analyzing urban tree cover. On the other 

hand, the accuracy is lower when 

compared to other studies where the urban 

environment is not a factor. 

 While the goal of this project was 

to assess the accuracy of urban tree canopy 

classification using an OBIA method 

without LiDAR data, it should be noted 

that there are many examples within the 

literature that support the benefits of 

LiDAR data to the overall accuracy of a 

land cover classification process, 

especially when assessing tree cover. One 

example is Zhou and Troy (2008) which 

achieved an overall accuracy of 92.3% and 

overall kappa of 0.899 when including 

LiDAR data in their OBIA. User’s 

accuracy and producer’s accuracy were 

97.7% and 94.4% for coarse vegetation, 

such as trees, for that study. The use of 

LiDAR is an important tool for assessing 

tree cover because it can effectively 

separate the taller trees from other 

herbaceous ground cover such as grass, 

small shrubs, and marshland. The reason 

that this project focused on using image 

texture and other spatial and spectral 

elements was because of a lack of LiDAR 

data for temporal analysis. In Minnesota, 

there is only comprehensive LiDAR data 

publicly available between 2011 and 2013. 

Unless the person or group researching 

changes to tree cover can wait for another 

public LiDAR mission to be flown or fund 

LiDAR data collection privately at the city 

scale, additional methods of accurate tree 

canopy assessment are needed.    

The design of the process used in 

this project for segmentation and 

classification within eCognition Developer 

9.5 achieved an expected level of 

accuracy. However, there are several areas 

where error has influenced the 

classification of tree cover. One source of 

error is the nine-year time gap between the 

NAIP imagery. The space in time likely 

led to spectral differences within imagery 

that influenced segmentation and 
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classification of the image. Moskal et al. 

(2011) identified three main categories of 

error in OBIA assessment of urban tree 

cover: spectral content, spatial detail, and 

temporal availability of imagery. The 

project detailed in this paper likely suffers 

from some of these same sources of error. 

The NAIP imagery selected for this 

project was chosen because it was the 

image pair that most closely corresponded 

to the ten-year timeframe of the project. In 

an ideal situation, this image pair would be 

from the same month, or even the same 

week, in order to minimize error due to 

changes in sunlight, shadows, chlorophyll 

fluorescence of vegetation, etc. Even 

though the images used were within one 

calendar month of each other, potential 

error from changes in the spectral 

characteristics of the ground cover 

influences how the eCognition 

multiresolution segmentation algorithm 

groups pixels into objects. Because the 

initial segmentation process in this project 

relies solely on the spectral and NIR and 

does not use LiDAR or other inputs, it is 

sensitive to changes in spectral content. 

The way that the pixels are grouped into  

objects determines their textural properties 

which are a central part of the 

classification ruleset in this project. 

During the classification process, 

visual inspection of spectral, textural, and 

spatial characteristics of image objects 

were performed to monitor for large scale 

classification error. While the overall 

classification proved to be accurate, there 

were several common conditions within 

the imagery that effected classification. 

Examples of features that created 

confusion within the classification process 

included algae covered patches on ponds 

which had similar values compared to 

grass. Individual trees within residential 

yards were sometimes grouped into the 

same object as lawn cover, which made it 

impossible to classify individual trees 

effectively.  

Texture was one of the key 

elements of the classification rule set used 

in this project. As discussed above, texture 

calculations in eCognition are based on 

Haralick’s GLCM principals. Each 

object’s contrast, entropy, dissimilarity, 

and homogeneity value are relative to its 

neighbors within the image. The textural 

features used in this project achieved an 

accuracy comparable to other studies in 

the field; however, while they are capable 

of successfully classifying tree canopy, 

they also are vulnerable to error. For 

example, there were several cases where 

patches of grass along boulevards and 

right of ways generated a high level of 

contrast and entropy and low homogeneity 

which were similar to the tree cover 

values. This similarity led to 

misclassification of several objects. Other 

examples where textural properties created 

the potential for misclassification included 

tall marsh grasses, narrow strips of grass 

between two structures, and fence lines. In 

an effort to correct these 

misclassifications, the project used spatial 

features of these objects to try and reject 

them from the tree canopy classification. 

In the case of grass strips along boulevards 

and backyard fence lines, the ruleset 

created a maximum length/width ratio to 

eliminate long and narrow objects, which 

did not share the more rounded 

characteristics of trees.  

 

Local Canopy Cover Change  

 

This project found a 1.26% increase in the 

total canopy cover within Maple Grove, 

MN between 2008 and 2017. While no 

existing studies were found specifically for 

Maple Grove, there are several studies that 

have surveyed tree cover change within 

Minnesota. Norwak and Greenfield (2018) 
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used a paired point analysis to conduct a 

temporal tree cover analysis for each of 

the 50 states. They found that Minnesota 

had a mean change in tree cover of 0.0% 

between 2009 and 2014. In a previous 

study Norwak and Greenfield (2012) 

found an absolute change in tree cover in 

Minneapolis of -1.1% or 74.1 acres 

between 2003 and 2008. Yuan, Sawaya, 

Loeffelholz, and Bauer (2005) found a 

relative change in forest cover in the seven 

county Minneapolis and Saint Paul 

Metropolitan Area of -7.9 % between 1986 

and 2002.  

 Maple Grove adopted their current 

Forest Preservation Management Plan in 

2002 and it consists of eleven priorities. 

Priory two calls for the establishment of a 

reforestation program and priority four 

takes steps to confirm the health of the 

forest through regeneration and replication 

of native species (City of Maple Grove, 

2020). This program was started at a point 

when, according to Yuan et al. (2005), the 

metropolitan area was experiencing a 

reduction in forest cover. The other two 

studies listed above show forest cover loss 

stabilizing in Minneapolis and Minnesota 

between 2003 and 2014. Given the 

positive direction of other studies in 

Minnesota and the goals of Maple Gove, it 

is possible that the 1.26% increase in 

forest cover found in this project is a 

realistic achievement for the city.  

Upon further review of the canopy 

cover classification results, it was 

observed that the increase in tree canopy 

likely came from two sources. First, the 

continuing maturation and growth of 

existing trees within the city created an 

increase canopy area over the nine-year 

period. Secondly, canopy cover increases 

appear to have come from the conversion 

of agricultural land into residential 

neighborhoods. There are a few areas in 

the western part of the city that were fields 

in 2008 and had been converted to 

residential use by 2017. While the 

residential use typically causes the 

reduction of tree canopies, in this case the 

conversion brought new tree plantings in 

yards, and new parks and boulevards with 

tree growth that did not exist in the 

agricultural fields.  

 The final totals of the classified 

areas differ slightly. This is likely due to 

error created during the processing of the 

imagery for use in this project. This 

processing included combining the 

original imagery into mosaic datasets and 

clipping the mosaic to the project area. 

This process could result in small 

variations in total pixel count between the 

image years. Also, processing of the 

imported eCognition classification 

polygon within ArcPro could create error. 

The Erase function was used to separate 

area within Maple Grove classified as non-

tree using the classified tree polygon. 

Again, due to small variations in the 

dataset, this could lead to slight 

differences in the overall area of ground 

cover classifications. The 2008 data 

resulted in a total area of 37.95 square 

miles and the 2017 data had a total area of 

35.15 square miles. The official area of 

Maple Grove is 35.0 square miles. The 

0.20 square mile difference in the 

calculated total areas could impact the 

results of the overall tree canopy change.    

 

Direction of Future Studies  

 

In order to improve classification accuracy 

of similar projects in the future, several 

areas within the methodology should be 

studied to see if they lead to increase 

classification accuracy. First, using a 

unique ruleset within eCognition for each 

project year could improve accuracy. In 

this project, one ruleset was applied to 

both 2008 and 2017 imagery. Given that 
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the imagery spans a nine-year period, 

many factors could cause differences in 

spectral properties of the images. Date, 

time, flight path, camera lens, and sensor 

type could all play a role in creating 

enough difference within the imagery to 

justify the creation of unique rulesets for 

each dataset. For this project the NAIP 

imagery used was all flown on the same 

date in each of the two project years and 

were all 4-band images. Additional 

precautions would need to be taken to 

adjust the OBIA ruleset if images used 

within mosaic datasets were not all from 

the same flight mission.  

Secondly, adding additional data 

into the segmentation process and 

classification collateral could improve 

accuracy. By including a GLCM in the 

segmentation dataset, pixel texture values 

could then be used to more accurately 

group similar pixels together instead of 

relying exclusively on spectral properties. 

For example, this might help to reduce the 

number of times when grass and tree cover 

are grouped together within an object due 

to similar spectral features. Additional 

thematic layers could be used to help 

reduce classification errors. Building 

footprints, national land use and land 

cover maps, and more robust wetland 

datasets could all be integrated as thematic 

layers within eCognition to theoretically 

provide improved classification accuracy.  

Lastly, a multi-level segmentation 

approach could be explored in future 

projects that focuses on texture-based 

classification. Both Moskal et al. (2011) 

and Zhou and Troy (2009) used a multi-

level segmentation approach. This process 

segments the objects into primitive objects 

at a fine scale and allows different 

thematic layers to be used within each of 

the segmentation levels (Zhou and Troy, 

2009). Multi-level segmentation allows 

objects to be merged into larger polygons 

based on their class type and then re-

segmented with a different set of user 

parameters (Moskal et al., 2011). The goal 

is to achieve more homogeneous objects 

especially when trying to classify multiple 

land cover types. This process could be 

used to try an improve the segmentation of 

the NAIP imagery by generating objects 

that contain only tree cover.  

 

Conclusion 

 

Urban tree canopies provide important 

environmental service benefits to their 

communities. The world population 

continues to grow and with that, many 

cities are seeing their population densities 

increase. With increasing population 

comes increased development from 

housing, businesses, and community 

services. This development is having a 

negative impact on the overall tree canopy 

cover in communities around the globe. 

Monitoring changes to these tree canopies 

on a regular basis will be critical to 

preserving these benefits into the future. It 

is important to find improved methods for 

assessing changes to tree cover that can be 

conducted regularly at a reasonable cost. 

 The focus area of this project is 

Maple Grove, MN which has seen large 

population and housing growth over the 

last 20 years, making it a suitable area for 

studying how this growth has affected the 

overall tree canopy. To measure the 

change an OBIA ruleset was developed 

using spectral and spatial features 

combined with specific textural properties 

of the image. Texture is used in place of 

the more commonly used LiDAR datasets 

to classify the image. The OBIA was 

conducted in the Trimble eCognition 

Developer 9.5 environment using NAIP 

imagery and MN DNR water features 

datasets.  

 The results from the OBIA 
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methodology in this project yielded a 

positive increase of 1.26% of 63 acres in 

Maple Grove, MN. An accuracy 

assessment was conducted using an error 

matrix and visual interpretation of 

randomly generated check points. The 

error matrix concluded that the overall 

classification accuracy for the 2008 tree 

canopy was 85.5% and 89.5% for the 2017 

tree canopy classification. When these 

findings were compared to other temporal 

studies conducted within Minnesota and 

the Maple Grove’s forestry plan 

established in 2002, the results appear to 

be consistent with expectations.  

 Further studies should be 

conducted to try an improve the accuracy 

of OBIA using texture as a primary 

classifier. Integrating texture into the 

segmentation process as well as using 

additional thematic datasets could all 

potentially yield higher accuracy results.  

 Overall, OBIA can deliver 

relatively accurate results in urban tree 

canopy assessment. While further studies 

are needed, textural and spatial features 

appear to be a strong substitute for LiDAR 

data when it is unavailable or cost 

prohibitive. Using this type of 

methodology to conduct a temporal 

assessment on tree canopies can provide 

community stakeholders with data in a 

relatively short timeframe at a reduced 

cost compared to traditional methods. If 

reliable tree canopy change data can be 

generated on a regular interval, 

community stakeholders could more 

proactively manage tree cover in an effort 

to maximize the environmental service 

benefits that it produces.      
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