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Abstract 

 

The ability of remote sensing applications to accurately differentiate priority vegetation types 

was evaluated on a 664-hectare habitat management unit on Agassiz National Wildlife Refuge, 

located in Marshall County in northwest Minnesota. The Refuge is a diverse complex of wetland 

and upland habitats, largely inaccessible by foot. Its relative inaccessibility, coupled with the 

known occurrence of various non-native and invasive plant species, presents a critical need for 

inventory and monitoring of Refuge flora. Aggressive species such as narrow-leaved cattail 

(Typha angustifolia), common reed (Phragmites australis), and willow (Salix spp.), all prevalent 

on the Refuge, are of special management interest. The ability to determine change in percent 

cover of priority vegetation types over time is important in evaluating the success or failure of 

habitat management practices and the Refuge‟s progress in meeting habitat objectives. This 

study was designed to measure the capabilities of Definiens eCognition and ERDAS
TM 

software 

in delineating and classifying these vegetation types across both upland and wetland Refuge 

habitats.  

 

Introduction 

 

Refuge Overview 

 

Agassiz National Wildlife Refuge (NWR), 

established in 1937, is situated in the 

tallgrass aspen parklands ecological 

province of Minnesota and lies between the 

coniferous forests to the north and east and 

the tallgrass prairie to the south and west. 

The Refuge itself is comprised of 24,890 

hectare (ha) of wetland, shrubland, 

forestland, grassland, cropland, and black 

spruce-tamarack bog (U.S. Fish and Wildlife 

Service [USFWS], 2005). Its habitats are 

especially important for wildlife, such as 

migratory birds, moose, bear, wolves and 

deer, among a wide range of other fauna. 

The Refuge has a complex water 

management system consisting of 26 pools, 

ranging from 16 to 4,047 ha in size, all of 

which are regulated by an intricate system of 

dikes and water control structures (USFWS, 

2005).  

Refuge habitats are primarily 

managed through water level manipulation, 

mowing, timber management, prescribed 

fire, and chemical application (USFWS, 

2005). Agassiz NWR is managed to meet 

specific objectives, including the protection 

and production of migratory birds and other 

wildlife, and the provision of large-scale 

biodiversity. Vegetative inventory and 

monitoring must be completed to determine 

if management actions are achieving pre-

defined Refuge objectives. 
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Management Issues 

 

Agassiz NWR, much like other Refuges 

within the NWR System, has been 

negatively impacted by aggressive invasive 

species, both native and non-native. Some 

non-native or “exotic” plant species were 

deliberately introduced to specific areas for 

specific purposes while other introductions 

were accidental. Exotic plants can cause 

drastic and expensive ecological (loss of 

biodiversity) and economic damage by 

outcompeting native species, causing shifts 

in both floral and faunal composition, and 

reducing the vegetative structural diversity 

that is important to wildlife. Reed canary 

grass (Phalaris arundinacea), Canada thistle 

(Cirsium arvense), and hybrid cattail (Typha 

X glauca) are particularly invasive at 

Agassiz NWR (USFWS, 2005).   

Controlling the spread of aspen 

(Populus tremuloides), a native species, is 

one of the main habitat objectives on the 

Refuge. As aspen encroaches on historically 

open grassland areas it not only changes the 

floral and structural composition of the land, 

but it also alters bird community 

composition. For example, with less open 

grassland areas, certain grassland-dependant 

species (e.g., sharp-tailed grouse, Le Conte‟s 

sparrow, Nelson‟s sharp-tailed sparrow) are 

forced to locate more suitable habitat for 

breeding and nesting which, in some cases, 

are off-Refuge (USFWS, 2005).  

Examples of two non-native species 

the Refuge is actively seeking to manage 

include narrow-leaved (Typha angustifolia) 

and hybrid cattail. These particular species, 

if left unmanaged, have the ability to out-

compete other emergent wetland vegetation 

(e.g., sedge [Carex spp.], bulrush 

[Schoenoplectus spp.]), and convert open 

water to a cattail-choked marsh (Selbo and 

Snow, 2004). The repercussions of this 

would adversely affect many of the Refuge‟s 

over-water nesting birds (e.g., ducks, grebes, 

gulls). Most waterbird species find a 50:50 

mix of open water and emergent vegetation 

(e.g., cattail [Typha spp.]), commonly  

referred to as “hemi-marsh,” to be the ideal 

wetland condition (Weller and Spatcher, 

1965; Fredrickson and Reid, 1988).  

Historically, sedge meadows 

constituted more than three-quarters of 

Minnesota‟s original wetlands. However, 

abundance of sedge meadow habitat, both 

on and off Refuge, has been severely 

reduced due to human introduced hydrologic 

changes and encroachment by reed canary 

grass, willow (Salix spp.), and cattail. 

Although sedge meadow typically does not 

support the diversity of species usually 

associated with other wetland types, this rare 

and declining habitat type is indispensible 

for lilies, irises, native orchids, mallards, 

northern harriers, sandhill cranes, soras, 

Wilson‟s snipes, yellow rails, sedge wrens, 

among other species. On the Refuge, it is 

believed that prolonged high water 

stimulates the invasion of sedge meadows 

by cattails (USFWS, 2005).  

Aggressive hybrid cattail also tends 

to out-compete important stands of emergent 

vegetation. Emergent habitat dominated by 

bulrush is found in Agassiz Pool and 

benefits species such as Franklin‟s gulls, 

grebes, diving ducks, black terns, and black-

crowned night-herons (USFWS, 2005).  

 

Vegetation Monitoring Techniques 

 

Due to the vastness and inaccessibility of 

wetland habitats at Agassiz NWR, many 

ground-based vegetation monitoring 

techniques (e.g., plot frames, line transects) 

are not practical or cost effective. Therefore, 

the Refuge is exploring the possibility of 

utilizing color infrared (CIR) imagery, 

geographic information systems (GIS) and 

image processing software, such as 

ERDAS
TM

 and Definiens eCognition, to 

classify, quantify, and accurately assess 
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changes to vegetation composition over 

time. The ability to accurately quantify the 

increase or decrease of priority plant types 

(e.g., sedge, cattail) over time would allow 

Refuge staff to better evaluate the success or 

failure of their present management regime. 

The main vegetation species of 

interest in this study include: aspen, bulrush, 

cattail, common reed, grasses (Family 

Poaceae), open water/submerged aquatic, 

reed canary grass, sedges, and willow. 

 

Remote Sensing 

 

Remote sensing is a broad field of study 

which can be described in various ways. 

According to Lillesand and Kieffer (1987), 

remote sensing is the science and art of 

collecting and interpreting data obtained by 

a device not in immediate contact with the 

phenomenon under investigation. Remote 

sensing, as it applies to this study, can be 

more narrowly defined as observation of the 

earth‟s land and water surfaces by means of 

reflected or emitted electromagnetic energy 

(Campbell, 2002). It is an invaluable tool 

which has improved substantially in recent 

years. Presently, remote sensing is 

commonly utilized in conjunction with GIS 

to link ancillary data to remotely sensed data 

(Campbell, 2002). One of the advantages of 

remote sensing is the nadir which provides a 

better understanding of spatial relationships 

and generates the ability to measure size, 

area, height, and depth (Campbell, 2002). 

Remotely sensed data can also aid in 

monitoring and detecting change over time. 

Utilized in combination with an appropriate 

field sample design, remote sensing is an 

efficient tool for landscape inventory and 

monitoring. Lastly, remote sensing, relative 

to photo interpretation (PI), allows more 

portions of the electromagnetic spectrum to 

be captured and analyzed such as the near 

infrared (IR), mid-IR, and even the thermal 

IR, rather than analyzing only the visible  

spectrum (Lillesand and Kiefer, 1987). 

 

Color Infrared Imagery 

 

Scanned CIR aerial photography was chosen 

for this study over both color and black and 

white film because of its broader spectral 

resolution and ability to better distinguish 

between vegetation types. CIR imagery 

delves into both the visible and the near IR 

spectrum, allowing more in depth analysis 

of the absorption and reflectance of light 

(Figure 1).                

  

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1. Depiction of increased spectral 

differentiation of vegetation in the near IR spectrum. 

Figure obtained from Campbell (2002). 

 

The ability to go further into the 

electromagnetic spectrum is key for 

separation of vegetation classes (Campbell, 

2002). According to Campbell (2002), the 

absorption and reflection of light in the near 

IR spectrum is determined by the structure 

of the spongy mesophyll tissue, not the plant 

pigments. Therefore, the bright IR 

reflectance observed from living vegetation 

is a result of the cavities within the leaf and 

internal reflection of IR radiation within the 

leaf‟s structure (Campbell, 2002).  

 

Software 
 

Definiens eCognition 4.0  
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eCognition is an object-based image 

processing software with capabilities of 

feature extraction and classification. This 

software implements the use of multi-

resolution segmentation; a means of 

knowledge-free extraction of image objects. 

This bottom-up technique constructs 

hierarchical networks of images by merging 

smaller image objects into larger image 

objects (Definiens eCognition Professional 

Version 4.0 Manual, n.d.). Although 

eCognition has the capabilities to perform 

image classification, its main purpose in this 

project was multi-resolution segmentation.  

 

ERDAS
TM

 9.2 

 

ERDAS
TM

 is a raster-based image 

processing software utilized for feature 

extraction and classification of satellite and 

aerial images. Capabilities include 

preparing, displaying, and enhancing digital 

images for use in GIS. Although this 

software has many applications, its primary 

purpose for this project was supervised 

image classification.  

 

Objectives 

 

1) Determine the ability of using both 

eCognition and ERDAS
TM

 software to 

accurately classify priority vegetation 

classes from analysis of fall color IR 

imagery.  

 

2) Determine if, in the future, Agassiz staff 

can analyze infrared imagery and obtain 

desired results.  

 

Study Area 
 

The original scope of this project was to 

generate a vegetation classification and 

evaluate accuracy levels for priority 

vegetation types on multiple Refuge habitat 

management units (HMUs). This included  

collecting ground truth data for 441 training 

sites and 276 randomly distributed accuracy 

sites across the 24,890-ha Refuge. 

Due to time and resource (e.g., 

availability of and access to necessary 

software and computer hardware) 

constraints during the classification and 

analysis process, the scope of this project 

was reduced from a focus on the majority of 

the Refuge‟s land base to a single 664–ha 

HMU (hereafter referred to as the 

Headquarters HMU). The Headquarters 

HMU is located in the south-central portion 

of the Refuge and was selected because of 

its suspected high (compared to other 

Refuge HMUs) diversity of priority plant 

species (Figure 2). Each priority vegetation 

class (see Methods section) was believed to 

have been represented within this HMU, 

making it a suitable study site. 

 

 
 

Figure 2. CIR image of Agassiz NWR showing 

Headquarters HMU study area.  

 

Methods 

 

Vegetation Classes 

 

The vegetation classification was comprised 

of 10 vegetation classes; eight priority and 

two non-priority. Priority vegetation classes 

included bulrush, cattail, common reed, 

other grasses, reed canary grass, sedges, and 

willow. The two non-priority vegetation  
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classes included open water/submerged 

aquatic and „other.‟ The „other‟ class 

included vegetation common to non-

agricultural disturbed areas, like goldenrod 

(Solidago spp.), thistle (Cirsium spp.), and 

sweetclover (Melilotus spp.). 

 

Data Acquisition 

 

CIR imagery was acquired on 9 August, 

2007 by an LMK 2000 aerial survey film 

camera made by Zeiss. This camera system 

used a 152 mm lens and 9X9 inch format. 

The imagery was flown at a scale of 

1:15,840 and processed and scanned at 800 

dots per inch (DPI) by the USFWS, Region 

3, Division of Conservation Planning. A File 

Geodatabase (FGDB) containing Refuge 

data was obtained from the Division of 

Conservation Planning. The main purpose of 

the FGDB was data storage.  

Agassiz NWR provided the 

remaining vector datasets for this project. 

These datasets included a Refuge boundary, 

roads, dikes, ditches, pools, prescribed fire 

boundaries, HMU boundaries, State Soil 

Geographic (STATSGO) and Soil Survey 

Geographic (SSURGO) data, national 

wetland inventory (NWI) data, Minnesota 

watershed data, and a 1997 vegetation 

classification of the Refuge completed by 

the U.S. Geological Survey – Upper 

Mississippi River Environmental Sciences 

Center (USGS-UMESC). 

Although Agassiz NWR spans both 

zones 14 and 15 of the Universal Transverse 

Mercator (UTM) projection, all datasets 

were designated as North American Datum 

(NAD) 1983 zone 14N. Newly created 

vector datasets were also projected in NAD 

1983 zone14N. The FGDB, however, was 

projected in GCS_North_American_1983. 

 

Data Processing 

 

eCognition Segmentation 

Segmentations were created using 

eCognition Software. Multiple test 

segmentations were created for the 

Headquarters HMU by assigning different 

values to the following parameters: scale, 

color, and shape (compactness and 

smoothness). As stated by Thomas, Hendrix 

and Congalton (2003), scale is the most 

important parameter as it is the 

heterogeneity tolerance. This parameter 

determines the size of each individual 

polygon generated by the segmentation 

process. According to the (Definiens 

eCognition Professional Version 4.0 

Manual, n.d.), the color parameter, can 

either increase or decrease the spectral 

homogeneity. By defining a color weight of 

1.0, all emphasis is placed on the spectral 

homogeneity and the shape homogeneity is 

not taken into consideration. Changing the 

weight of the shape parameter can either 

increase or decrease the shape homogeneity 

of the resulting polygons. A high weight 

value for compactness outputs amorphously 

shaped feature polygons that do not adhere 

to major features, and defining a high weight 

value for smoothness allows for polygons 

that follow natural features (Thomas, 

Hendrix and Congalton (2003). The 

aforementioned parameters should be 

balanced on a per study basis and will 

depend on the specified objectives (Thomas, 

Hendrix and Congalton (2003). 

The final segmentation for the 

Refuge was selected based on highest 

correlation between the delineated segments 

generated by eCognition and the actual 

vegetation transition zones observed on the 

ground. The segmentation which proved to 

have the highest correlation was generated 

using a scale parameter of 20, color set to 

0.9, shape set to 0.1, compactness set to 0.7, 

and smoothness set to 0.3. The above 

parameters were utilized to generate the 

final segmentation for the entire Agassiz 

NWR. The final segmentation was exported 
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as a shapefile and 717 polygons were 

selected from the segmentation and ground 

truthed. 

 

Sample Design 

 

Determining Total number of Training and 

Accuracy Sites 

 

The total number of sample sites was  

determined by following Congalton and 

Green‟s (1999) calculations; however, the 

total number of recommended accuracy sites 

was doubled. Congalton and Green (1999) 

recommend multiplying the number of 

vegetation classes in the classification by 65 

to establish a total number of sample sites. 

According to Congalton and Green (1999), 

this accepted (overall) level of accuracy was 

first described in Anderson et al. (1976) and 

has since been considered (by most) an 

adequate standard for assessing the accuracy 

of vegetation classifications. For this study, 

the open water/submerged aquatic class was 

not included in the calculation due to its 

unique (and easily photo-interpreted [PI‟d]) 

spectral signature. Campbell (2007) explains 

that water absorbs light in the near IR versus 

vegetation which reflects highly in the near 

IR. The lack of light reflectance in water 

generates a uniquely dark signature making 

it easily identifiable. However, to obtain 

spectral signatures for the training and 

classification process in ERDAS
TM

, 15 

training sites were generated and ground 

truthed for open water/submerged aquatic. 

Also, the “other” class was not included in 

this calculation, as it was used as a “catch-

all” for classifying vegetation encountered 

that did not match one of the priority 

vegetation types previously defined.  

The total number of sample sites was 

calculated by multiplying the remaining 

eight classes by 65. Congalton and Green 

(1999) break the calculation down further; 

identifying the total number of training and 

accuracy sites per class. Following this 

methodology, 50 of the 65 sites from each 

vegetation class were used as training and 

the remaining 15 were used as accuracy.  

In an attempt to increase the level of 

statistical validity, the total number of 

accuracy sites was doubled (instead of 

multiplying the number of priority 

vegetation classes by 15, the eight priority 

vegetation classes were multiplied by 30). 

 

Excluded Areas 

 

Prior to data collection and scope reduction  

of this project, specific areas of Agassiz 

NWR were excluded from the study. The 

northern two-thirds of the Agassiz pool were 

excluded because open water signatures are 

comparatively spectrally unique and show 

relatively little variability making it an easy 

class to PI (Congalton and Green, 1999). 

Due to the relative ease of PI of this class, 

training sites would be more valuable if 

distributed throughout other areas of the 

Refuge. The 1,619-ha Wilderness Area was 

not included because it is not an actively 

managed HMU. Remaining excluded areas 

(about 5,260 ha) were removed from the 

study because they had undergone active 

management (e.g., prescribed fire) after the 

2007 CIR images were acquired, but prior to 

the collection of this study‟s ground truth 

data (Figure 3). 

 

 
 
Figure 3. Map of Agassiz NWR showing areas 

excluded from study. 
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Training and Accuracy Site Selection  

 

A 1,000 X 1,000-meter (m) grid was created 

using Hawth‟s Tools extension in ArcMap. 

The grid was utilized to stratify training 

polygons across the Refuge in order to 

obtain a good spectral representation of all 

vegetation classes. 

Polygons were hand selected from 

the segmentation and attributed as training 

sites based on an observer-perceived 

diversity of spectral signatures. Figure 4  

depicts how some cells (1,000 X 1,000 m) 

contained portions of excluded areas which 

were not allowed to contain training sites. 

Therefore, the number of training sites per 

cell was based on a set ratio. Cells 

containing 75 percent or more of excluded 

lands were allotted one training site, cells 

containing 50-74 percent were allotted two 

training sites and cells containing 25 percent 

or less were allotted three training sites. 

Cells not affected by the Refuge boundary 

or by the excluded areas could receive two 

or three training sites. A total of 441 training 

sites were selected. 

 

 
 

Figure 4. Example of training site distribution using a 

1,000 X 1,000-m grid. 

 

Accuracy sites were randomly  

generated using the Hawth‟s Tools 

extension in ArcMap. Only one point was 

assigned per individual segmentation-

derived polygon. Polygons that received a 

point were attributed as accuracy sites. A 

total of 276 accuracy sites were randomly  

generated. 

Training and accuracy sites were 

loaded onto a Trimble GeoXT global 

positioning system (GPS) receiver using 

ESRI‟s ArcPad software and Microsoft 

ActiveSync version 4.5. All data were 

collected in the field and stored directly in a 

Trimble GeoXT. 

 

Field Methods for Assigning Vegetation 

Classes to Training and Accuracy Sites 

 

Accuracy and training polygons were 

entered into the Vegetation Feature Class in 

the RLGIS Landscape and Habitat 

GeoDatabase. The RLGIS geodatabase has 

attributes and predefined domain values or 

pick lists for priority vegetation classes, 

non-associated plant species, and percent 

cover. The polygons, attributes and pick lists 

in the feature class were checked out to an 

ArcPad map. The ArcPad map was 

transferred to a Trimble GeoXT GPS using 

ActiveSync software. Training sites and 

accuracy sites were assigned the same 

symbology. This allowed sites to be ground 

truthed quickly and concurrently without 

introducing bias during the field data 

collection process.  

Each training or accuracy polygon 

was transected along its longest straight line 

and an inventory of the vegetation present 

and associated percent cover was conducted 

by the observer. This information was 

immediately recorded in a Trimble GeoXT. 

Each polygon was then assigned to one of 

10 vegetation classes based on a greater than 

50 percent cover majority. If the dominant 

(≥50%) vegetation type was not one of the 

eight specific priority vegetation classes or 

open water/submerged aquatic it was 

recorded in the “other” class. 

Sites not comprised of a dominant 

 species (none ≥50%) or sites located in 

 Refuge agricultural fields were discarded  

and replacement sites were generated within 
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 the corresponding cell. A total of 717 sites 

were ground truthed.  

If the previously described method 

of assigning a polygon to a vegetation class 

was not successful, the polygon was 

transected as many times as necessary until 

the polygon could be assigned a vegetation 

class.  

The majority of sites were ground 

truthed on foot; however, a portion of the 

sites were ground truthed via airboat, all 

terrain vehicle, or Marsh Master. Although 

different means of transportation were 

utilized, the same protocol for assigning a 

class to a polygon was followed. 

 

Checking Data back into the FGDB 

 

Data collected in the field was downloaded 

daily to a computer using ActiveSync 

software and checked back into the RLGIS 

FGDB using ArcPad Software. This ensured 

multiple days of data would not be lost or 

erased. After all study sites had been ground 

truthed and the data collection process was 

complete, the two FGDBs (two Refuge staff 

collected field data) were compiled into a 

single FGDB using the load objects option 

in ArcCatalog.  

 

Generating a Vegetation Classification 

using Image Processing Software 

 

Training sets were selected by vegetation 

class from the original FGDB and exported 

to new shapefiles. Each class shapefile was 

loaded into eCognition and re-segmented at 

a scale parameter of 10 to delineate 

spectrally homogeneous sub-polygons 

(Figure 5, Image A) within each training 

polygon (Figure 5, Image B). The emphasis 

of the re-segmentation was spectral 

homogeneity, therefore, the shape factor 

(compactness and smoothness) was given a 

 weighted value of zero. The purpose of the 

 re-segmentation was to increase the 

 possibility of spectral separation during the 

classification process. Spectral separation 

can be maximized by removing signatures of 

one or more sub-polygons that are not 

spectrally representative of the majority 

class assigned to a training polygon.  
 

Image A.                                Image B. 
 

Figure 5. A re-segmented (scale parameter 10) 

training polygon depicting sub-polygons (Image A) 

and training polygon derived from the original 

eCognition segmentation (Image B). 

 

A unique polygon ID was assigned to each 

re-segmented polygon (Figure 5, Image A). 

The re-segmented class shapefiles were then 

loaded into ERDAS
TM

 and corresponding 

signatures and their unique IDs were 

extracted using the Signature Editor Tool 

under the Classifier Menu. Linking the 

unique polygon ID to the spectral signature 

enabled individual signatures to be 

identified both in ArcMap and in ERDAS
TM

. 

This was a vital step which allowed specific 

spectral signatures to be added to, or 

removed from, the training signature set and 

the classification as needed. Once the 

training signature sets were generated for 

each vegetation class they were merged into 

one signature set using the Signature Editor 

Tool and a maximum likelihood 

classification was completed in ERDAS
TM

 

using the supervised classification tool 

under the classifier menu. During this 

process ERDAS
TM

 analyzed each individual 

pixel within the Headquarters HMU and 

matched it to a corresponding class based on 

the statistics of the training signatures (i.e., 

brightness values). 
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A majority was then run on the 

classified image using the Zonal Attributes 

to Polygon Attributes Tool under the Vector 

Utilities Menu. All polygons from the 

eCognition-generated segmentation were 

then classified based on the most prominent 

class found within each segment (the 

majority). 

 Generating maximum likelihood  

classifications was a repetitive process. For 

each individual classification a new 

signature set was created by studying the 

vegetation and percent cover within each 

polygon in conjunction with visually 

analyzing the corresponding spectral 

signature. Signatures were plotted and 

histograms were generated to determine the 

level of spectral confusion between 

individual signatures, as well as different 

vegetation classes. Figures 6 and 8 illustrate 

good spectral separability between the 

signatures as shown by histograms and plots 

of mean brightness values. Figures 7 and 9 

illustrate poor spectral separability between 

the signatures as shown by histograms and 

plots of mean brightness values. Plots and 

histograms were analyzed to determine 

spectral signatures with minimum spectral 

confusion and maximum spectral separation 

between vegetation classes (Donnelly, 

2007). Signatures with good spectral 

separability were kept and used to generate a 

classification. Signatures with poor spectral 

separability were not included in the 

signature set used to generate a 

classification. 

 

Dividing the HMU into Subsets 

 

Headquarters HMU was divided into east 

and west subsets and classifications were 

generated for each subset. Unique signature 

sets were used for each of the classifications 

in order to decrease spectral confusion. The 

east half of the HMU, because of its drier 

condition, was classified using spectral 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. An illustration of good spectral separability 

between cattail (black) and common reed (gray). 

 

 

Figure 7. An illustration of poor spectral separability 

between reed canary grass (black) and grass (grey). 

 

 
 
Figure 8. An illustration of good spectral separability 

between common reed (black) and sedge (red). 

 

 
 
Figure 9. An illustration of poor spectral separability 

between sedge (red) and grass (black). 
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signature sets for common reed, other 

grasses, “other,” reed canary grass, sedges, 

and a greatly reduced cattail signature set. 

Due to the west half of the HMU being 

much more hydric, the classification was 

generated using the spectral signature sets 

for common reed, other grasses, open 

water/submerged aquatic, sedges, and a 

much more diverse signature set for cattail. 

Bulrush was included in some 

classifications; however, the final 

classifications were generated without 

bulrush signatures, because it could not 

reliably be spectrally separated from other 

vegetation classes. 

 

Photo Interpretation 

 

Signature sets for willow and aspen were 

omitted from classifications to reduce 

spectral confusion with shadows and other 

vegetation classes (specifically cattail). 

Areas of willow and aspen were PI‟d and 

assigned to the appropriate class (willow or 

aspen) by changing the majority values 

previously assigned to the eCognition-

generated polygons during the classification 

process in ERDAS
TM

.  

 

Further Analysis 

 

Data Collection 

 

A second set of training and accuracy data 

were collected on 17-18 October, 2009, to 

help mitigate a lack of accuracy sites 

resulting from the study scope reduction to 

classify the Headquarters HMU only. These 

data were collected using the same protocol 

as the original set of data; however, 

centroids were also collected within the  

ground-truthed polygons. 

 

Assessing Imagery 

 

An unsigned eight-bit continuous 

(enhanced) mosaiced image of the Refuge 

with 2-m resolution was the initial base 

layer for this study. An unenhanced single 

eight-bit continuous image covering the 

extent of Headquarters HMU, with 2-m 

resolution was also classified. The 2-m 

unenhanced image was added to the study 

and classified as a means of assessing how 

classifications generated on enhanced 

images (altered pixel brightness values) 

compare to classifications generated from 

original pixel values.  

 

Training Set Development from Seed Pixels  

 

In an attempt to increase the accuracy of 

individual vegetation classes, as well as the 

overall accuracy of the classification, seed 

pixels were used to generate regions of 

pixels with homogenous and separable 

spectral response. Training points were 

collected on 17-18 October, 2009 and were 

used to identify seed pixels in ERDAS
TM

. 

A seed pixel, as defined by 

ERDAS
TM 

Imagine (1997), is a single pixel 

that is representative of a training set. 

Contiguous pixels are compared to the seed 

pixel and are included in a region (the 

training polygon) if spectral parameters are 

met. These parameters include Euclidian 

distance of spectral values and number of 

pixels.  

The unenhanced east subset image 

was loaded into an ERDAS
TM

 viewer. Points 

representative of a homogeneous vegetation 

class were selected and exported to a 

training points shapefile and used for 

growing regions. The parameters for 

growing a region were set to a minimum of 

50 pixels and a maximum of 100 contiguous 

pixels and the spectral Euclidean distance 

varied from seed to seed (because it had to  

abide by the minimum and maximum pixel 

parameters).  

The spectral signatures created using 

the Region Growing Properties Tool were 
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saved as a single signature set and used to 

generate a classification. Signatures were 

removed from the generated signature set 

based on the resulting classification and on 

spectral separability in order to increase the 

accuracy. Classifications were re-generated 

using different signature sets until 

accuracies could no longer be improved.                                                                                                                                                               

This procedure was repeated for the west 

subset. Once a final signature set was 

established for the non-enhanced image, the 

seed pixels were loaded into ERDAS
TM

 and 

used as seeds to generate signature sets for 

the mosaiced image.  

 

Classification 

 

A maximum likelihood classification was 

completed in ERDAS
TM

 using the 

aforementioned tools and procedures (see 

Generating a Vegetation Classification using 

Image Processing Software section). A 

majority was then run on the classified 

image and was obtained in shapefile format.  

 

Accuracy Assessment 

 

The east and west subset majority shapefiles 

of the unenhanced image were merged 

together using the Merge Tool in ArcMap 

Data Management Toolbox in order to 

obtain one shapefile with the majority values 

for both the east and west subsets. The 

merged shapefile was then converted into a 

grid raster dataset using the Feature to 

Raster Tool from the Conversion Toolbox. 

Using the ERDAS
TM

 Import/Export option 

under the Import Menu, the grid raster 

dataset was converted into .img format. This 

procedure was repeated for the shapefiles 

obtained from the mosaiced image 

classification. 

Coordinates were generated for the 

accuracy points collected in October 2009. 

The coordinates along with the 

corresponding field data were exported from 

 the attribute table as a text file. 

The classified image file was opened 

in an ERDAS
TM

 viewer and the layer type 

was edited from continuous type to a 

thematic type. An Accuracy Assessment 

Viewer was also opened and linked to the 

viewer containing the classified image. The 

Accuracy Points text file containing the x-y 

coordinates was imported into the Accuracy 

Assessment Viewer and the points were 

displayed in the ERDAS
TM

 viewer 

containing the classified image. The Show 

Class Values option was selected under the  

Edit Menu to display the classified class 

value which corresponded to each individual 

accuracy point. An accuracy report was 

generated selecting the Accuracy Report 

option under the Report Menu.  

 

Results 

 

The overall accuracy of 51.9% for the 

unenhanced image proved to have a better 

overall accuracy than the mosaiced image‟s 

48.1% (Table 1 and 2, Figure 10 and 11).  

Accuracy per vegetation class varied 

significantly. Aspen and willow were PI‟d 

for both the mosaiced and the unenhanced 

image. The PI eliminated errors of 

commission because it allowed for the 

exclusion of two signature sets from the 

classification. An error of commission 

identifies a polygon as belonging to a class 

when in reality the field data shows it 

belonging to a different class (Congalton 

and Green, 1999). The elimination of the 

aspen and willow signature sets made it 

impossible for an eCognition-generated 

polygon to be misclassified in the 

classification as either of those two classes. 

However, it did  not automatically eliminate 

the possibility of an error of omission. An 

error of omission occurs when an area is not 

included in the correct class (Congalton and 

Green, 1999). PI of these two classes, not 

only yielded more accurate results on a per 
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class basis than what would have been 

obtained had they been classified using 

ERDAS
TM

, it also reduced the probability of 

spectral confusion between the remaining 

classes.  

The open water/submerged aquatic 

class was more accurately classified using 

the unenhanced image, yielding an accuracy 

of 67% versus 33% obtained from the 

classification using the mosaiced image 

(Table 1 and 2).  

Reed canary grass, common reed, 

„other,‟ and other grasses were all classified 

more accurately using the unenhanced 

image than when utilizing the mosaiced 

image. Although the aforementioned 

vegetation classes were more accurately 

classified using the unenhanced image, the 

degree of accuracy varied greatly amongst 

vegetation classes. The „other‟ class 

obtained the lowest accuracy (11%) from the 

above mentioned vegetation classes. This 

vegetation class was confused almost 

equally with reed canary grass, cattail, and 

other grasses (Table 1 and 2).  

Although the enhanced image 

produced a higher accuracy for five of the 

10 vegetation classes, as well as a 3.8% 

better overall accuracy, the mosaiced image 

generated better accuracy for the sedge and 

cattail vegetation classes. The mosaiced 

image produced 60% accuracy for sedge and 

85% accuracy for cattail, whereas the 

unenhanced image obtained 40% accuracy 

for sedge and 77% accuracy for cattail.  

Bulrush obtained 0% accuracy  

by default (in both classifications) as a result 

 of the exclusion of its signature set from the  

classification. Also, it was not PI‟d because  

of the complexity of its spectral signature.  

The only vegetation class, classified 

by ERDAS 
TM

, which met the pre-

established acceptable level of accuracy 

(≥85% as per Congalton and Green, 1999) 

was the cattail class generated from the 

mosaiced image. Even with the aid of the PI, 

both vegetation classifications (unenhanced 

and mosaiced) failed to meet the overall 

≥85% accuracy goal. Based on the results 

(i.e., accuracy assessments) of this study, the 

analysis of CIR imagery in conjunction with 

image processing software cannot be used to 

accurately (≥85%) classify priority plant 

groups and ultimately quantify percent 

change over time on Agassiz NWR without 

changes to imagery used and/or vegetation 

categories. 

 

Discussion 

 

Date of Field Data Collection 

 

To complete the 2008 field data collection 

effort before vegetation senesced and snow 

covered the landscape, it was necessary to 

utilize and segment a 2007 CIR image of the 

Refuge. The 2007 imagery was used as the 

base layer for all data preparation and 

analysis. One-year-old imagery (from 

August 2007) allowed image segmentation 

and training site selection to be completed 

in May and June 2008 and ground truthing 

to begin in late July 2008. Photographs 

taken of the Refuge in August 2008 could 

not have been processed, scanned, and 

returned to Agassiz NWR with enough time 

to experiment with segmentation 

parameters, segment the imagery, and  

complete the data collection effort before 

winter arrived. 

The utilization of one-year-old 

imagery may have led to unnecessary 

discrepancies and spectral confusion during 

the training process in ERDAS
TM

. 

Conditions on the ground vary with  

time; therefore, an August image of the 

landscape may depict different conditions 

than ground truthed data collected months 

ahead or months after the imagery was 

taken.  

For example, a study site 

photographed in early spring with the 
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Table 1. Accuracy assessment of the mosaiced image classification illustrating errors of omission and commission 

and the user‟s and producer‟s accuracy. Overall classification accuracy 48.1%. 

 

 
 

 
 

Figure 10. Final ERDAS
TM

 classification of the mosaiced Headquarters HMU. 
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Table 2. Accuracy assessment of the unenhanced image classification illustrating errors of omission and commission 

and the user‟s and producer‟s accuracy. Overall classification accuracy 51.9%. 
 

 
 

 
 

Figure 11. Final ERDAS
TM

 classification of the unenhanced Headquarters HMU.
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appearance of water in a specific area may 

be identified as sedge when ground truthed 

in late summer. Data with such  

discrepancies introduce spectral confusion 

into a classification because the resulting 

signature sets are no longer representative of 

a homogeneous class; rather they are 

representative of a mixture of two or more 

classes. This specific example could result 

in open water areas being misclassified as 

sedge.  

To decrease spectral confusion, data 

should be collected as close to the flight date 

as possible. However, if this is unfeasible, 

reference data should be collected within the 

same season. Obtaining imagery and 

collecting data at staggered time intervals 

increases the possibility of error and impacts 

the accuracy of the classification. Resulting 

misclassifications are not an accurate 

representation of the software‟s capabilities; 

rather they are caused by landscape change 

and misrepresentative reference data 

(Congalton and Green, 1999).  

 

Film 

 

The KODAK AEROCHROME III IR Film 

1443 used in this study consisted of three 

bands: green, blue, and red/IR. This film is 

sensitive to ultraviolet, visible, and IR 

radiation to approximately 900 nm 

(KODAK, n.d.). Since the KODAK CIR 

film is only sensitive up to 900 nm, it may 

have been a limiting factor to spectral 

separability of plant groups. When sensor 

sensitivity encompasses more of the near IR 

spectrum, spectral separability increases for 

vegetation. In future studies, a CIR image 

encompassing more of the near IR spectrum 

 may yield higher accuracies.  

 

Image Enhancement 

 

ERDAS
TM

 Image Equalizer software was 

implemented to create an aesthetically 

pleasing CIR image mosaic from many 

individual 2007 CIR photographs. Image 

enhancement is conducted to improve the 

visual appearance of an image and its 

interpretability by amplifying slight 

differences in features, making them more 

apparent to the user (Lillesand and Kiefer, 

1987). It is important to note that image 

enhancement is performed without regard 

for the integrity of the original pixel 

brightness values (Campbell, 2002). 

According to Campbell (2002), image 

enhancement will alter the original pixel 

values causing them to lose their 

relationship to the original brightnesses on 

the ground.  

Image Equalizer calculated a 

histogram of brightness values for the 2007 

CIR photographs utilized in this study. The 

histograms were then averaged and applied 

to each individual image which made up the 

final mosaic of the Refuge. Enhancing the 

image with this software resulted in altered 

pixel values; while some pixels were 

assigned new values other pixels retained 

their original values. 

Enhancement of the 2007 Agassiz 

image resulted in vegetation classifications 

generated from altered pixel values. The 

alterations of the pixel values could have 

been responsible for some of the spectral 

confusion between various vegetation 

classes. Vegetation classifications and 

change detection should be generated from 

original pixel values (Campbell, 2002). If 

generating a classification on enhanced 

imagery, an increased number of training 

and accuracy sites and a well distributed 

sample design can mitigate for some of the  

introduced error. 

 

Atmospheric Conditions 

 

All energy must pass through the  

atmosphere before reaching a remote 

sensing instrument. According to Lillesand 
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and Kiefer (1987), the atmospheric effects 

on energy can vary throughout a flight and 

will usually vary substantially from mission 

to mission. Impacts of atmospheric 

conditions such as dust, smoke, haze, or 

clouds may also vary depending on the 

height at which the senor is carried; low 

flying aircraft may experience minor 

impacts in comparison to sensors carried by 

satellites (Campbell, 2002). Because light is 

altered (i.e., scattered, reflected, absorbed) 

in intensity and wavelength by particles and 

gases in the earth‟s atmosphere, pixel 

brightness values are altered, thus degrading 

the quality of the image (Campbell, 2007). 

However, these pixel value alterations can 

be mitigated for using the Atmospheric 

Adjustment Tool in ERDAS
TM

. Adjustments 

to mitigate for atmospheric conditions were 

not made on the imagery utilized in this 

study. This may have introduced some 

degree of inaccuracy. 

 

Multi-Temporal Imagery 

 

Multi-temporal imagery was not available  

for this project and was a limiting factor. To 

help compensate for the lack of multiple 

dates of imagery, the August image was 

used in conjunction with the following 

ancillary data: STATSGO and SSURGO 

soils, NWI data, and a 1997 Refuge 

vegetation classification completed by 

USGS-UMESC.  

Dates of multi-temporal data, which 

will prove most helpful, will vary from one 

study to the next depending on the 

vegetation being mapped and habitat types 

present (Ozesmi and Bauer, 2002). Because 

not all vegetation leafs out simultaneously, 

amount of litter varies from species to 

species, and chlorophyll amounts are 

dependent on individual species and time of 

year; having multi-temporal imagery 

available for this study would have 

improved the accuracy of the classification. 

A spring image of the Headquarters HMU 

may have reduced some of the spectral 

confusion between sedge, reed canary grass, 

common reed, and other grasses. 

Multi-temporal imagery may have 

also better differentiated between warm 

season and cool season grasses. Species 

such as big bluestem (Andropogon gerardii) 

and reed canary grass mature at different 

times and therefore the time frame during 

which their spectral signatures are the most 

representative vary. Reed canary grass, 

being a cool season grass, would better 

exhibit spectral differentiation in spring and 

early summer. Big bluestem, as a warm 

season grass, is harder to spectrally 

differentiate until later in the summer. Other 

vegetation (for example different species of 

grass) matures in late spring or early 

summer and have their most unique spectral 

response at that time.  

 

Change in Scope of Work 

 

Specific research objectives must be pre-

defined and understood prior to generating a 

sample design and establishing data 

collection methods. The objectives of a 

study will always be dependent upon the 

mission of the Refuge, the complexity of the 

landscape, time, and funding. Once the 

objectives have been established, detail of 

the classification and required precision of 

data and accuracy assessment can be 

determined. 

The sample design and protocol will 

vary depending on whether the goal is to 

determine gross change across a refuge or to 

detect minute change in percent cover of 

less abundant vegetation species. Flying a 

specific area with an established goal or 

objective may yield more accurate data than 

analysis completed on imagery which was 

obtained for a different purpose (Cowardin, 

1974). No matter what the objective, pre-

defined qualitative and quantitative 
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measures must always be in place prior to 

data collection. 

As a result of the reduction in scope, 

the number of training and accuracy sites 

within the Headquarters HMU did not meet 

the minimum number recommended by 

Congalton and Green (1999) for the 

Headquarters study area. In order to resolve 

this problem, training signatures were 

incorporated from adjacent areas and 

utilized for the maximum likelihood 

classification, as well as for the majority. 

Official accuracy assessments were not 

completed on these classifications due to the 

lack of accuracy assessment sites. However, 

based on knowledge of the area and time 

spent out in the field it was noted that the 

overall accuracy of these classifications 

were low.  

A second set of training and 

accuracy sites were collected (17-18 

October, 2009) and utilized to generate the 

vegetation classifications and carry out 

accuracy assessments. Although, the 

accuracy of the classifications increased, this 

could have been due to utilizing only 

spectral signatures from within the 

Headquarters HMU or from generating 

training sets from seed pixels, or from a 

combination of the two. Additionally, it 

cannot be overlooked that the data utilized 

in the final classification were collected two 

years post image acquisition. Therefore, the 

reference and accuracy data (collected in the 

field) could have been erroneous data 

yielding false accuracies.  

Also, although training sets 

developed from seed pixels generate more 

spectrally homogenous signatures, it is a 

very time intensive task and can be a 

limiting factor when dealing with large 

sample sizes and when comparing multiple 

images‟ accuracies.  

  

Sample Design 

 

Distribution of Data Collection 

 

Selection of a proper sample design is vital 

to any study and is often dictated by time 

and resources. Had the project not deviated 

from the intended scope, the total number of 

training and accuracy sites determined using 

Congalton and Green‟s (1999) calculation 

would have been sufficient to complete the 

vegetation classification and the accuracy 

assessment. However, the original training 

sites for this study did not equally represent 

all of the vegetation classes. For this 

particular study, an equal number of training 

sites per class, for the more commonly 

occurring vegetation classes, should have 

been collected and the total number of 

training sites for the less abundant 

vegetation classes (i.e., bulrush) should have 

been increased. More ground truthed sites 

should have been collected in the field 

during the initial data collection process 

after it was noted that some vegetation 

classes were underrepresented. The number 

of training samples per category can and 

should be adjusted based on the objectives 

of the study and on the variability and 

relative importance (Congalton and Green, 

1999). Sample sites for each class must be 

distributed throughout the study area. Sheer 

number will not necessarily provide a 

representative distribution of vegetation 

classes among the training sites. 

 

Sample Distribution 

 

To reduce the time and cost of data 

collection, the use of a buffer around 

existing roads and trails to determine 

acceptable areas for training and accuracy 

sites would be acceptable. This method may 

only be implemented if the network of roads 

and trails covers the extent of the study area. 

If the only roads and trails within the study 

area are clustered in a certain area (i.e., the 

northwest corner), some off road and trail 
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data collection will be necessary to obtain a 

good distribution and representation of 

spectral signatures. 

  

Spectral Confusion within Training 

Polygons 

 

Training polygons were assigned to a 

vegetation class based on a 50 percent cover 

majority. Following this protocol, training 

polygons could contain spectral signatures 

from multiple vegetation classes. For 

example: a polygon comprised of 55% 

sedge, 25% other grasses and 20% „other‟, 

based on its vegetation breakdown and the 

50 percent cover majority, would be 

classified as sedge. After completing the 

data collection, all spectral signatures from 

the training polygons identified as sedge 

would then be combined to generate a 

complete sedge signature set. This signature 

set would not be a homogeneous 

representation of the sedge signatures, 

because other classes were present within 

the sedge training sites. Some of this 

spectral confusion can be eliminated by PI, 

by adding and removing spectral signatures 

from sub-polygons, and with the aid of 

ancillary data. However, the final signature 

set may still be a misrepresentation of the 

actual spectral range of the specific 

vegetation class. Also, classifying an image 

using heterogeneous signature sets and 

outputting it to homogeneous vegetation 

classes will introduce error which cannot be 

mitigated. 

Using this protocol, spectral 

confusion could also be introduced as a 

result of a polygon‟s percent cover 

breakdown being close to 50:50. For 

example: a polygon comprised of 52 percent 

sedge and 48 percent other grasses is 

incorrectly assigned to other grasses because 

of the lack of a definite dominant vegetation 

class. After completing a classification and 

running a majority on this polygon, 

ERDAS
TM

 determined the majority to be 

sedge. The discrepancies observed when 

comparing the software-generated 

classification to the ground-truthed accuracy 

data, at times, were not representative of the 

software‟s capabilities. Rather, they were 

representative of the spectral confusion 

introduced as a result of the field methods 

implemented. Erroneous data collection in 

the field can decrease the accuracy of the 

vegetation classification, even though the 

software classified it correctly.  

In future studies, erroneous data 

collection of both training and accuracy sites 

could be drastically reduced if the percent 

cover necessary to assign a polygon to a 

vegetation class is increased to 100% for a 

single class. Campbell (2002) states the 

most important property of a good training 

site is its uniformity. A training polygon 

must be representative of a homogeneous 

vegetation class. This however, can only be 

determined by ground truthing sites. If 

visited sites are not homogeneous they must 

be discarded and selection of replacement 

sites is necessary. If too many sites are 

discarded the image may be re-segmented or 

vegetation classes may be combined. These 

decisions are determined on a per study 

basis. If a polygon were truly representative 

of a homogenous class, spectral confusion 

between vegetation classes, as seen in 

figures 8 and 9, would not be as severe a 

problem during the classification  

procedures.  

 

Photo Interpretation 

 

During the creation of the signature sets,  

training polygons were PI‟d and the spectral 

 signatures were visually analyzed in an 

effort to reduce the spectral confusion within 

each of the class‟ signature sets. Also, 

willow and aspen were PI‟d due to spectral 

confusion with other signatures, specifically 

cattail.  



19 

 

Had fine-scale elevation data such as 

Light Detection and Ranging (LIDAR) been 

available, the need to PI could have been 

reduced. The implementation of LIDAR has 

the potential to improve spectral separability 

by distinguishing between vegetation classes 

based on the differences in vegetation height 

(McCauley and Jenkins, 2005). The ability 

to distinguish vegetation types in wetland 

areas would have been helpful in 

differentiating between reed canary grass 

and common reed and between sedge and 

other grasses. 

 

Management Implications 

 

Defining the Scope of the Project 

 

Aside from the specialized skill set required, 

access to software and adequate technology 

is also a limiting factor. This study was only 

doable because of time and resources 

offered by other USFWS personnel. Without 

Region 2, Division of Biological Service‟s 

Definiens eCognition software and Region 

3, Division of Conservation Planning‟s 

ERDAS
TM

 software, the cost of the remote 

sensing software alone would have 

surpassed the project‟s funding. Budgets for 

both field offices and the regional office 

could be a limiting factor for availability of 

image processing software in the future.  

Alternatives to using remote sensing 

software would include hand digitizing and 

PI, the use of stereo imagery, or contracting 

these information needs out to the UMESC, 

or another agency or private firm with 

expertise in vegetation mapping.  

 

Conclusion 

 

The results showed vegetation 

classifications of upland and wetland 

habitats on Agassiz NWR cannot be 

completed accurately using only CIR 

imagery and image processing software. The 

accuracy of the vegetation classification 

may be improved by using multi-temporal 

data or by combining vegetation classes into 

physiognomically similar vegetation classes 

(i.e., mesic grassland, herbaceous, wetland 

shrub, shrubland, wetland forest, upland 

forest, freshwater marsh; Ozesmi and Bauer, 

2002).  

In future studies, the combined use 

of image processing software, PI, multi-

temporal image data, imagery encompassing 

more of the near IR spectrum, and LIDAR is 

recommended to increase the accuracy of 

vegetation classifications. Classifications 

would also benefit from being divided into 

physiognomic classes, by masking out areas 

of known vegetation occurrence or which 

are easily PI‟d such as water and forest 

(Ozesmi and Bauer, 2002). 

 A good representative sample 

design, accurate data collection, and 

knowledge of the area are also vital 

components of a study such as the one 

completed for Agassiz NWR.  

 Based on the accuracy results, the 

time necessary to generate a classification, 

and the remote sensing skills required to 

efficiently implement remote sensing 

softwares, it is unfeasible for Agassiz NWR 

to generate their own vegetation 

classifications on site and obtain acceptable 

levels of accuracy (>85%).  
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