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Abstract 

 

Erosion on the landscape usually happens in small increments and over thousands of years. 

With the advent of the agricultural and industrial revolutions many areas within the United 

States have witnessed increased top soil erosion. Much of this erosion has originated on 

agricultural lands, usually being attributed to the lack of adequate ground cover and not 

taking advantage of “best management practices.” These “best management practices” 

include: terracing, conservation dams and/or grass flow ways. The objective of this project 

was to utilize a high resolution digital elevation model developed using LiDAR (Light 

detection and ranging) paired with the SPI model of erosion prediction to test the model’s 

applicability to an entire watershed as a way to quickly identify areas at risk of gully erosion. 

                                  

Introduction 

 

Topography defines the pathways of 

surface water movement across a 

watershed and is a major factor watershed 

hydrologic response to rainfall inputs. 

Raster-based digital elevation models 

(DEMs) have been widely applied to 

efficiently derive topographic attributes 

used in hydrologic modeling such as slope 

and upslope contributing area (Wu, Li, and 

Huang, 2008). Numerous soil erosion 

models have been developed during the 

last fifty years to estimate rates of soil 

erosion under different land use systems 

(Wilson and Lorang, 2000).  

 Erosion analysis models such as 

USLE (Universal Soil Loss Equation) and 

RUSLE (Revised Universal Soil Loss 

Equation) developed and used by the 

United States Department of Agriculture 

(USDA) can be very cumbersome in 

practice.  

USLE is a multiplicative model 

that was empirically derived from over 

10,000 plot years of data (Wischmeier and 

Smith, 1965; Wischmeier, 1976). The 

equation consists of the following formula:  

 
                 

 

 Where A is the mean soil loss in 

tons per hectare over the entire slope 

length, R is the rainfall-runoff erosivity 

factor, K is the soil erodibility factor, C is 

a cover management factor, P is a 

supporting practices factor, L is a slope 

length factor and S is a slope steepness 

factor. R is the product of the storm total 

kinetic energy and the maximum 30 

minute intensity for qualifying storms 

(Meyer, 1984; USDA 2013). 
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 The model is used to compare soil 

erosion from individual farm fields to that 

expected from a ‘standard’ soil-loss plot. 

The USLE defines soil loss as the amount 

of eroded soil and how far it has moved 

down slope (Yoder and Lown, 1995). 

RUSLE retains the basic structure of the 

original model but incorporated new factor 

values that were based on the analysis of 

thousands of new erosion measurements 

(Renard, Foster, Weesies, and Porter, 

1991; Renard, Foster, Weesies, McCool, 

and Yoder, 1993; Renard, Foster, Yoder, 

and McCool, 1994). 

 In general, the improvements to the 

USLE model included; revising the R 

factor values, allowing the ability to adjust 

K and C factor values and to improve the 

LS factor equations. 

 These models calculate the mass of 

soil eroded by a rain event. This can be 

helpful in many instances. However in 

other instances, it may not be important to 

know exactly how many tons of soil were 

moved during an event but rather knowing 

the spatial location of where gully erosion 

is occurring on the landscape thus 

allowing a land manager to more quickly 

and effectively mitigate the erosion issue. 

 In contrast, to the efforts during the 

last decades to investigate sheet and rill 

soil erosion processes, relatively few 

studies have been focused on quantifying 

and/or predicting gully erosion. The 

expansion of the use of modern spatial 

information technologies such as 

geographical information systems (GIS), 

digital elevation modeling (DEM) and 

remote sensing have created new 

possibilities for research in this field 

(Martinez-Casasnovas, 2003). 

 

Terrain Analysis 

 

LiDAR based DEM data allows the cell 

resolution to be as small as 1 meter, this 

brings a dataset with 900 times more detail  

than a 30 meter resolution DEM (Nelson, 

2010). 

 High resolution data allows 

predictions of erosion without the need of 

lengthy volume calculations.  Digital 

Terrain Analysis (DTA or TA) can be used 

as a way to interpret LiDAR elevation 

data. DTA is a remote sensing 

methodology that combines DEM-based 

topographic data analysis in GIS with 

imagery, field-based observation and the 

study of landscape processes. The purpose 

of Digital Terrain Analysis is to predict 

landscape processes reliably while 

minimizing the time and effort invested in 

field work and modeling procedures 

(Dogwiler, Dockter, and Omoth, 2010). 

 Primary attributes are calculated 

directly from elevation data. These include 

aspect, slope, and flow accumulation as 

well many others. Stream Power Index 

(SPI) is a secondary attribute calculated 

from several primary attributes. Secondary 

or compound attributes involve the 

combinations of primary attributes; these 

are indices (Nelson, 2010). Indices 

describe the spatial variability of specific 

landscape processes, such as the potential 

for sheet erosion (Moore, Grayson, and 

Ladson, 1991). 

 According to Wilson and Lorang 

(2000) SPI is the measure of erosive 

power associated with flowing water based 

on the assumption that discharge is 

proportional to the specific catchment area 

and it predicts net erosion in areas of 

profile convexity and tangential concavity 

(flow acceleration and convergence zones) 

as well as the net deposition in areas of 

profile concavity (zones of decreasing 

flow velocity). 

 

Study Area 

 

The study area for this project was the  



 3 

Gilmore Creek, Minnesota, USA 

watershed, which is 6216 acres. Gilmore 

Creek starts in the hills and bluffs and 

flows downstream through the towns of 

Goodview and Winona, Minnesota before 

draining into the Mississippi River. Large 

bluffs dominate the areas between the 

farming uplands and the suburban style 

subdivision housing developments in the 

lower elevations. Nearing the northern 

(downstream) portion of the watershed, 

Gilmore Creek passes through the Saint 

Mary’s University of Minnesota’s Winona 

campus (Figures 1 and 2). 

 

 
Figure 1. General location of the Gilmore Creek 

Watershed. 

 

 
Figure 2. General outline of the Gilmore Creek 

Watershed. 

 

Methods/Analysis 

 

Software Used 

GIS software used to perform the SPI 

analysis were the ESRI ArcGIS v10.1 with 

the ESRI Spatial Analyst extension.  

 

GIS Data 

 

For SPI to be a useful model, high 

resolution DEM data are required (Nelson, 

2010). High resolution refers to the cell 

size of a DEM, the smaller the cell size the 

higher the resolution of the DEM. 

Generally, high resolution is considered to 

be less than a 6 meters cell size. For the 

purpose of this study 1 meter resolution 

data were used. Figure 3 is an example of 

a raster dataset. 

 
Figure 3. Cell size. 

 

 High resolution DEM datasets 

were until recently prohibitively expensive 

to produce, however recent advances in 

LiDAR techniques and detectors have 

allowed a more cost effective way to 

produce such datasets.  

 

Pre-Processing of GIS Data 

 

GIS data were processed to ensure proper 

care had been taken in the development of 

the data. Accuracy and precision were 

scrutinized. During this step data were 

clipped, merged, and joined to provide 

seamless GIS data for the study area. In 

addition to these steps, pit filling and 

filtering of the DEM data were performed 
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on the entire extent of the Gilmore Creek 

watershed (Figure 4).  

 

 

 
Figure 4. LiDAR DEM of the Gilmore Creek 

Watershed. 

 

Pit filling fills any sink or pit in the 

DEM. A pit is a depression in the DEM 

where all slopes are positive surrounding 

an area (ESRI, 2013a). For the purpose of 

this study, this was performed so areas 

where pooling occurs would ‘force’ the 

flow downstream.  

 
Figure 5. Example of a pit (ESRI, 2013a). 

 

A low level filter (3x3, mean) was 

also performed on the DEM. This process 

smoothed the data to create elevation 

averages for better interpretation. LiDAR 

data expressed in file-resolution DEMs 

can contain either errors or spurious 

features which can impede flow analysis 

(Nelson, 2010). When a low level filter 

(3x3, mean) is performed on a raster 

dataset, a 3x3 cell window moves 

systematically across the dataset (Figure 6) 

changing the middle cell’s value to the 

mean of the nine window cells (ESRI, 

2013a). 

 
Figure 6. Depiction of a 3x3 filter (ESRI , 2013a). 

 

It should be noted that pit filling by filter 

use can change the nature of the DEM data 

in a way that may not fully represent the 

landscape. 

 

ArcGIS Analysis Methods 

 

The pre-processed DEM was then used to 

develop several intermediate raster 

datasets. These intermediates datasets 

were referred to as primary attributes 

because they were calculated directly from 

the elevation dataset, these included: 

slope, flow direction, and flow 

accumulation.  

 Slope calculates the maximum rate 

of change in elevation from one cell to its 

neighbors. For the purposes of this study, 

percent based slope was calculated. 

Percent based slope, also referred to as 

‘percent rise’ was calculated by rise 

divided by run multiplied by 100 (Figure 

7). Slope is used directly in the calculation 

of SPI. 
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Figure 7. Slope Analysis output of the Gilmore 

Creek watershed. 

 

Flow direction calculates the 

direction of flow from every cell in the 

raster. For purposes of this study, an eight 

direction (D8) flow was used. The D8 

flow direction model had eight valid 

output directions relating to the eight 

adjacent cells into which flow could travel, 

this follows the approach presented in 

Jenson and Domingue, 1988 (ESRI, 

2013a). Figure 8 shows the output of the 

D8 Flow direction analysis performed on 

the Gilmore Creek watershed. 

The resulting flow direction was 

the input for the flow accumulation  

 

 
 

Figure 8. Flow direction analysis output for the 

Gilmore Creek watershed (secondary legend 

provided by ESRI's, 2013a). *Note: No data on a 

flow direction analysis implies an area does not 

drain to an adjacent cell (i.e. an area with no slope).  

  

analysis. Flow accumulation calculates 

accumulated flow as cells flow downslope. 

Figure 9 illustrates how a flow direction 

analysis translates to flow accumulation 

and Figure 10 shows the output of the flow 

accumulation model using the Gilmore 

Creek flow direction data. 

Finally, with the use of the raster 

calculator SPI was calculated with the 
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Figure 9. Example Flow accumulation raster 

calculation (ESRI, 2013b). 

 

 
Figure 10. Flow accumulation analysis output for 

the Gilmore Creek watershed. 

 

following equation:  

 

SPI = LN(([FlowAccum_Raster] + 0.001) 

* ((Slope_Raster]/100) + 0.001)) 

 

The above equation for SPI refers 

to the FlowAccum_Raster which is the 

output from the flow accumulation 

analysis (Figure 9) and Slope_Raster 

which is the output from the slope analysis 

(Figure 7). Figure 11 illustrates the 

resulting SPI raster dataset. The inset map 

shows the same location as the flow 

accumulation raster (Figure 10) for 

comparison. A higher SPI value should 

correspond to a higher likelihood of 

erosion on the landscape. 

 

 
Figure 11. Stream Power Index results for the 

Gilmore Creek watershed. Red symbolization 

indicates where a SPI value is at or above the .001 

percentile of all SPI values throughout the 

watershed. 

 

Results/Discussion 

 

This study applied the SPI model to a 

whole watershed; field verification of a 

significant area was unreasonable. As 

such, a combination of aerial 

photo/satellite imagery interpretation and 

less intensive field verification were used 

to analyze the results from the SPI model. 

Three areas were chosen for verification 

(Figure 12). Verification sites were chosen 

based upon SPI values and accessibility 

(e.g. by foot or by of aerial photo/satellite 

imagery). 
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Figure 12. SPI model verification sites. 

 

Verification Site 1 

 

This site was chosen for its high SPI value 

and because it lies within the Saint Mary’s 

University of Minnesota trail system, 

allowing easy access for field visitation. 

Because of the thick canopy of this area 

few conclusions could be made from 

interpreting the aerial imagery for this site, 

other than noting several residential lawns 

drained into this verification site (Figure 

13). Figure 13 shows the top .001% of SPI 

values in red and the top .01% of SPI 

values in yellow. 

 While conducting fieldwork, it was 

noted that although the grade of the 

surrounding landscape was high, there 

were very few areas with notable/visible 

erosion. Upon arrival at the verification 

site, it was possible to see erosion both up 

hill and downhill from the site. This was 

likely to be more attributed to the 

topography (slope) rather than land cover 

or land use because this was an 

undeveloped area with near complete 

natural coverage of the immediate area 

(Figure 14 and Figure 15). 

 

 
Figure 13. Verification site 1 Aerial (Bing Aerial 

Imagery). Red and yellow symbolization indicates 

where an SPI value is at or above the .001 and .01 

percentiles (respectively) of all SPI values 

throughout the watershed. 

 

 
Figure 14. View downhill from verification site 1. 

Verification Site 2 

 

Verification site 2 had multiple high SPI 

valued catchment areas converging on a 

conservation dam (Figure 16). 
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This site allowed for observations 

of how the conservation dam affected 

 

 
Figure 15. View uphill from verification site 1. 

 
Figure 16. Verification site 2 Aerial (Bing Aerial 

Imagery). The conservation dam is in the upper left 

corner of the figure. Red and yellow symbolization 

indicates where a SPI value is at or above the .001 

and .01 percentiles (respectively) of all SPI values 

throughout the watershed. 

 

overland flow. When viewing the area 

immediately ‘upstream’ from the 

conservation dam with .001% and .01% 

SPI values overlaid, it was apparent the 

dam is serving its purpose of slowing the 

flow (by reducing the grade) and then 

releasing the water in a controlled manner 

in an area where there was sufficient 

ground cover and a lack of high slope to 

accommodate the out-flow in a controlled 

fashion. 

 Because pit filling was used during 

the preprocessing steps the full picture of 

this site may not be represented.  Pit filling 

over-generalizes the landscape and does 

not allow the model to include the benefit 

of the conservation dam. This over-

generalization is evident after closer 

inspection of the aerial imagery. The SPI 

model did not predict erosion in an area 

where erosion was obviously present from 

the aerial image (Figure 17). This error is 

possible because pit filling increased the 

elevation of the sink and in doing so 

created an area that was flat and did not 

fully represent the landscape. 

 

 
Figure 17. Visible erosion at verification site 2. 

Red and yellow symbolization indicates where a 

SPI value is at or above the .001 and .01 

percentiles (respectively) of all SPI values 

throughout the watershed. 

 

Verification Site 3 

 

Verification site 3 was chosen because the 

catchment area for this site is annually 

cultivated land with no visible erosion- 
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mitigating structures present, while still 

having a high SPI value (Figure 18). 

 

 
Figure 18. Verification site 3 Aerial (Bing Aerial 

Imagery). Red and yellow symbolization indicates 

where a SPI value is at or above the .001 and .01 

percentiles (respectively) of all SPI values 

throughout the watershed. 

 

Upon analysis of the aerial imagery 

for this site it was apparent a large amount 

of erosion was occurring at the 

‘downstream’ end of the high SPI values 

(Figure 19). 

 

 
Figure 19. Visible erosion at verification site 3. 

Red and yellow symbolization indicates where a 

SPI value is at or above the .001 and .01 

percentiles (respectively) of all SPI values 

throughout the watershed. 

 

This site is particularly interesting 

because the visible erosion is in Gilmore 

Creek itself. This would suggest during 

large rain events that this area experiences 

unimpeded overland flow entering 

Gilmore Creek and adding too much flow 

for the natural creek banks to 

accommodate. It also suggests if the flow 

was contained and released in a controlled 

manner, less erosion might occur where 

this flow enters Gilmore Creek. 

 

Conclusion 

 

The SPI model has not been extensively 

used to predict erosion areas over whole 

watersheds and as such it is possible that 

modifications to the equation, analysis, or 

verification could improve the results. 

With regards to the SPI model 

itself, it is apparent that land use and land 

cover can have a large impact on the 

erodibility of the landscape. When the SPI 

model is used on a small mostly 

homogeneous area where land cover and 

land use are similar throughout, it may not 

be as important to factor. However on a 

larger, more diverse landscape such as the 

Gilmore Creek watershed, land cover and 

land use become more important. 

Another point of concern with 

using the SPI model over a whole 

watershed is how pit filling skews results 

near erosion control structures such as 

conservation dams. Further, developing 

the model to include the steady release of 

overland flow from conservation dams, 

terracing or other conservation measures 

could help give a more complete picture of 

how current erosion mitigation measures 

are impacting overland flow and, in turn 

erosion, on the landscape. 
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