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Abstract 
 
Land degradation and subsequent soil erosion and sedimentation play a significant role in 
impairing water resources within subwatersheds, watersheds and basins. Using 
conventional methods to assess soil erosion risk is expensive and time consuming. 
Geographic Information Systems (GIS), coupled with the use of an empirical model to 
assess risk, can identify and assess soil erosion potential and estimate the value of soil 
loss. The objectives of this project are to: 1) assess soil erosion risk within a Zumbro 
River subwatershed in southeastern Minnesota using GIS and the Revised Universal Soil 
Loss Equation (RUSLE), 2) comparatively analyze the use and scaling effect of 
STATSGO and SSURGO soil databases with RUSLE and 3) assess the sensitivity and 
scaling effect of estimated soil loss to model variables. Soil, land use, digital elevation, 
flow accumulation and climatic data are used to generate RUSLE variables. This 
empirical soil erosion model estimates soil loss values by tons/acre/year and assesses the 
spatial distribution of soil erosion risk within the entire subwatershed. By comparing soil 
loss estimates, spatial distribution and variable sensitivity from the RUSLE model using 
STATSGO soil data and SSURGO soil data, it is possible to compare the responses of 
both soil databases. Nonparametric regression shows the level of relatedness between 
STATSGO and SSURGO RUSLE model outputs at the subwatershed scale. Correlation 
coefficients (R2) of 0.914, 0.928, and 0.922 for 10, 30, and 50 meter resolutions 
respectively highlight the significance of the relationship. At high to very high levels of 
estimated soil erosion loss the relatedness between STATSGO and SSURGO-based 
RUSLE model outputs lessened. Of the LS, K, and C model variables investigated, the C 
variable (cover management) exhibited a greater level of relatedness to RUSLE model 
outputs than the other variables at 10, 30 and 50 meter resolutions but not enough to be 
significant. 
 
Introduction 
 
Agricultural land in the U.S. is losing 
invaluable soil faster than it can be 
replenished because of erosion and the 

detachment and movement of soil 
particles. Soil erosion is one of the major 
non-point pollution sources in many 
watersheds (Wang and Cui, 2005).  
 Soil loss from agricultural lands 
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is estimated to be in the billions of tons 
per year. It is also estimated that more 
than 6 million metric tons of nitrogen 
fertilizer and over 100,000 metric tons of 
pesticides are applied to crop fields in 
the Midwest alone (Porter et al, 2001). 
Soil erosion, sedimentation, and the 
subsequent conveyance of fertilizers, 
pesticides, and herbicides play a 
significant role in impairing water 
resources within subwatersheds and 
watersheds. 
 Yet conventional methods to 
survey land and assess soil erosion are 
costly and time consuming. Mapping 
soil erosion using GIS can easily identify 
areas that are at potential risk of 
extensive soil erosion and provide 
information on the estimated value of 
soil loss at various locations (Yusof and 
Baban, 1999).  

By effectively predicting soil 
erosion, it is possible to: develop sound 
land-use practices as they relate to earth 
disturbing activities, estimate the 
efficiency of best management practices 
required to prevent excess sediment 
loading, and identify target areas for 
conservation funds or research (Hickey 
et al, 2005). 

Several soil erosion and non-
point source pollution models have been 
developed, modified, and combined with 
GIS software to take advantage of these 
new capabilities and provide regional 
soil erosion and non-point water quality 
assessments during the past decade 
(Wilson, 2003). Among these models is 
the Revised Universal Soil Loss 
Equation (RUSLE).  
 An inherent variable in the 
RUSLE model, which will be described 
in further detail later in this paper, is the 
use of soils data to generate erosion risk 
estimates. Several soil databases are 
available for use and they include the 

State Soil Geographic (STATSGO), Soil 
Survey Geographic (SSURGO), 
National Resources Inventory (NRI), 
Food and Agriculture Organization Soil 
Map of the United Nations/World Soil 
Classification (FAO), and other local 
and state soil databases developed by 
local governments and state natural 
resource agencies. 
 The two most commonly 
available soil databases for soil erosion 
risk modeling and watershed assessment 
are STATSGO and SSURGO (Gowda 
and Mulla, 2005). Both were developed 
by the U.S. Department of Agriculture 
(USDA) Natural Resource Conservation 
Service (NRCS). For both of these 
databases, maps are produced from 
different intensities and mapping scales, 
and each database is linked to attribute 
data for each soil and map unit. 
 The STATSGO soil database was 
developed primarily for regional, 
multistate, state, basin, and multicounty 
resource planning. STATSGO data are 
not detailed enough for planning at the 
county scale or smaller. STATSGO soil 
maps are compiled by generalizing more 
detailed SSURGO soil databases and 
utilizing generalized county soil maps 
(USDA NRCS, 1994). 
 The SSURGO soil database in 
contrast provides a more detailed level 
of soils interpretation and resolution and 
was developed primarily for much 
smaller scale resource planning activities 
including those at the county, township, 
farm, ranch, and land parcel level. This 
soil database is an excellent source for 
determining erodible areas, assisting in 
developing appropriate erosion control 
practices and developing land use 
assessments (USDA NRCS, 1994). 
 For those researchers and 
resource managers that decide to utilize 
the USDA NRCS soil databases for 
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modeling and assessment, availability of 
the databases may drive which databases 
are used. Figure 1, a map from the 
USDA NRCS, depicts the status of 
SSURGO soil database development by 
counties in Minnesota. As evident in 
Figure 1, one can see SSURGO is only 
available, as of August 2006, for 68 of 
Minnesota’s 88 counties. Minnesota’s 
current status is similar to what is found 
throughout the eastern and Midwestern 
U.S. with many counties still in the 
planning, development or review phases 
for SSURGO soil database 
establishment. The status of states and 
counties in the western U.S. is more 
incomplete with many areas that have 
not begun the planning and development 
phases of SSURGO establishment. 
National SSURGO coverage is planned 
for completion by 2008.  
 

Figure 1. Minnesota map depicting the status of 
SSURGO soil database development by county 
as of August 2006. Source: USDA NRCS. 
 

Researchers and resource 
managers who often use USDA NRCS 
soil databases have 1) begun using 
SSURGO when available, 2) combine 
SSURGO and STATSGO when 
conducting assessments at the regional 
scale and SSURGO is not available over 
the entire project area, or 3) continue 
utilizing STATSGO even when 
SSURGO is available as an option. 
 Researchers and resource 
managers, when considering which soil 
databases to utilize, must consider the 
benefits and drawbacks for each 
database based on project objectives and 
scale of research. It is also important to 
understand the effects of spatial scale at 
which soil databases are developed prior 
to choosing a database with which to 
work (Gowda and Mulla, 2005).  

If choice of database is not an 
option, or different databases must be 
stitched together (Hickey et al, 2005), 
what kind of impact, if any, will result 
based on model outputs? With respect to 
comparing soil attributes of STATSGO 
and NRI databases, it was demonstrated 
that there was disagreement for selected 
soil properties. This result implies risk 
assessment and ecosystem modeling 
outputs can be influenced by the 
selection of data sources (Ding et al, 
1999).  

Additionally, differences in 
runoff and soil properties can be 
attributed to the differences in the spatial 
resolution of the data sets (Levick et al, 
2004). It was demonstrated that when 
evaluating alternative agricultural 
management practices that a STATSGO-
based model predicted annual nitrate 
losses consistently higher than that for 
SSURGO data and that a SSURGO-
based model predicted annual 
phosphorous losses consistently higher 
than that for STATSGO data (Gowda 
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and Mulla, 2005). On the other hand, it 
was demonstrated that the integration of 
a FAO soil database into a watershed 
hydrologic model produced results 
comparable to the results produced when 
calculated using both STATSGO and 
SSURGO soils data (Levick et al, 2004). 

Because the determination of 
potential soil erosion risk can differ 
depending upon what data sources are 
used, it is difficult for resource managers 
to identify critical areas and apply 
appropriate management techniques. 
Consequently, a comparison of the most 
commonly available soil databases is 
needed. This project seeks to compare 
the STATSGO and SSURGO soil 
databases to determine their relatedness. 
 
Methods 
 
Empirical Model 
 
The Universal Soil Loss Equation 
(USLE), developed by Wischmeier and 
Smith in 1978, is the most frequently 
used empirical soil erosion model 
worldwide and was later modified into a 
revised Universal Soil Loss Equation 
model by including improved means of 
computing soil erosion factors (Shi et al., 
2002). These improved means for 
computing soil erosion factors generally 
fit into two categories: incorporation of 
new/better data and consideration of 
selected erosion processes. The inclusion 
of these factors into RUSLE has “the 
potential for broader prediction 
improvements” (Sonneveld and Nearing, 
2003; Jones et al, 1996).  

The RUSLE model can predict 
erosion potential on a cell-by-cell basis, 
which is effective when attempting to 
identify the spatial pattern of soil loss 
present within a large region. GIS can 
then be used to isolate and query these 

locations to identify the role of 
individual variables in contributing to 
the observed erosion potential value (Shi 
et al, 2002). 
 RUSLE computes average 
annual erosion from cover slopes as 
(Renard et al, 1997): 

 
A = R * K * L * S * C * P 
 
Where: 
 
A = computed average annual soil loss 
in tons/acre/year 
R = rainfall-runoff erosivity factor 
K = soil erodibility factor 
L = slope length factor 
S = slope steepness factor 
C = cover management factor 
P = conservation practice factor 
 

In examining the RUSLE 
variables the equation can be broken 
down into two parts: 1) environmental 
variables and 2) management variables 
(Hickey et al, 2005). The environmental 
variables include the R, L, S and K 
factors. These variables remain 
relatively constant over time.  The 
management variables include the C and 
P factors and may change over the 
course of a year or less. 
 
Model Limitations 
 
There are several limitations to the 
RUSLE model and they appear to be in 
three main categories: 1) the research 
location in which RUSLE is applied, 2) 
limitations inherent in the mathematical 
calculations and 3) limitations in scale. 
 
Research Location Limitations 
 
RUSLE was designed primarily for 
agricultural regions. Soil-erosion 
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potential as identified in non-agricultural 
regions may be inconsistent (Hickey et 
al., 2005).  Further, RUSLE has had 
limited application outside of the U.S. In 
one study using data that was collected 
on natural runoff plots located primarily 
in the eastern half of the U.S., the 
RUSLE model did not outperform the 
USLE in its prediction accuracy 
(Sonneveld and Nearing, 2003). 
 
Limitations in Mathematical 
Calculations 
 
The environmental variables used in 
RUSLE are relatively constant over the 
timescale of tens of years (at a 
minimum), while the management 
variables may change over the course of 
a year or less. Consequently, it is 
difficult to obtain current and accurate 
management variable coverage (Hickey 
et al., 2005).  

Several algorithms are required 
when processing data for input into 
RUSLE. Each of those algorithms may 
accentuate existing errors in data. 
Because RUSLE requires six input data 
layers to be multiplied together, the 
errors inherent in each layer are similarly 
multiplied, contributing to an even 
greater error in the derived soil loss 
values (Shi et al., 2002) Consequently, 
results of calculations should only be 
used in a comparative sense, and not to 
calculate sediment loads unless further 
validation or correction of the data 
occurs (Hickey et al., 2005). 
 
Limitations in Scale 
 
The erosion processes which are 
considered by RUSLE are often driven 
by relatively small features. Therefore, 
any output should be treated as 
qualitative, not quantitative, and the 

pattern of erosion, or vulnerability, 
should be examined (Hickey et al., 
2005). 
 
Project Site 
 
The Zumbro River Watershed, (Figure 
2), is approximately 1,513 mi.2 in size 
and is one of 12 watersheds that make up 
the Lower Mississippi River Basin in 
southeastern Minnesota. The Zumbro 
River Watershed lies in Dodge, 
Goodhue, Olmsted, Rice, Steele and 
Wabasha Counties. The Watershed itself 
is made up of 91 subwatersheds that 
range in size from 5.45 mi.2 to 51.21 
mi.2. 

Figure 2. The Zumbro River Watershed and its 
associated 91 subwatersheds in southeastern 
Minnesota. 
 

Many of the 91 subwatersheds 
that make up the Zumbro River 
Watershed have not been named. The 
subwatershed chosen as the project site 
for this research has not been named and 
for the purposes of this project and paper 
is considered the Zumbro River 
subwatershed. 
 The Zumbro River subwatershed, 
(Figure 3), is approximately 17.80 mi.2 
(11,391.57 ac., 4610.11 ha.) in size. The 
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subwatershed lies entirely in Olmsted 
County, north of Rochester, Minnesota. 
 The Zumbro River subwatershed 
was chosen as the project site for this 
research due to: 1) the availability of 
spatial and tabular STATSGO and 
SSURGO soils data for Olmsted County, 
2) diverse land cover that includes 
natural lowland and wetland, conifer and 
deciduous forests, pasture, hay, and row 
crops and 3) topographic variation in 
elevation and slope. 

Figure 3. The Zumbro River subwatershed 
project site. 
 
Data 
 
Data needed for this research project 
include: 
 

• Soil data 
• Elevation data 
• Land cover data 
• Rainfall/precipitation data 
• Conservation practices data 
• State, county, watershed and 

subwatershed boundary data 
 
The spatial and tabular State Soil 

Geographic (STATSGO) database and 
the spatial and tabular Soil Survey 
Geographic (SSURGO) database, 
established by the USDA NRCS, 

provided the soil data needed to generate 
the K factor (soil erodibility). 
 Digital elevation models (DEM) 
with a 30 meter resolution, established 
by the U.S. Geological Survey (USGS), 
provided the elevation data needed to 
generate the L and S factors (slope 
length and slope steepness). 
 Land cover digital data for the 
subwatershed was obtained from the 
Minnesota Land Cover Classification 
System (MLCCS), established by the 
Minnesota Department of Natural 
Resources (MDNR). This data, along 
with land cover and agriculture tabular 
data obtained from the USDA NRCS, 
was used to generate the C factor (cover 
management). 
 Rainfall/precipitation data was 
obtained from the USDA Agriculture 
Handbook Number 537 (Wischmeier 
and Smith, 1978). This information 
source provided the R factor (rainfall-
runoff erosivity) for the Zumbro River 
subwatershed project site. 
 Data for the P factor 
(conservation practices) within the 
subwatershed were not available. 
Potential sources for the data were 
investigated and included county land 
conservation departments, Farm Service 
Agency (FSA), MDNR, and USDA 
NRCS. An established and routinely 
used protocol for addressing this lack of 
data will be utilized to control P factor in 
RUSLE model replications. 
 Data for the state, county, 
watershed, and subwatershed boundaries 
were obtained from the MDNR and the 
U.S. Fish and Wildlife Service 
(USFWS). The digital data provided the 
necessary information to develop locator 
and project site maps and additionally 
provided the boundary framework to 
develop, clip, and analyze subwatershed 
data. 
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Analysis 
 
To address the project’s objectives, a 
GIS was developed to generate two 
separate RUSLE models, each using 
either the STATSGO or SSURGO soil 
databases and each model being 
calculated at a 10, 30, and 50 meter (cell 
size) spatial resolution to investigate 
scaling effects. Environmental Systems 
Research Institute (ESRI) software was 
used for these purposes.  
 ArcCatalog was used to manage, 
manipulate, reproject, create, and delete 
the data layers for this project. ArcMap 
was used to view, develop, edit, query, 
and analyze the project’s data layers 
while ArcToolbox was used in the 
development of the spatial data because 
of its geoprocessing functionality. 
 The projection used for this study 
was NAD83, UTM, Zone 15N. To 
ensure all spatial data obtained from data 
sources was in the correct projection, 
and to better understand the data overall, 
metadata from each data source was 
examined carefully. 
 In the ArcMap environment, 
three data frames were created to better 
manage each RUSLE model and their 
subsequent outputs for analysis. The first 
data frame housed the data layers and 
RUSLE model calculations that used the 
STATSGO soil database. The second 
data frame housed the same data layers 
and RUSLE model calculations that used 
the SSURGO soil database. The third 
data frame housed the RUSLE outputs 
for each model including the necessary 
data for further analysis.  
 
RUSLE Spatial Data 
 
For both RUSLE models, Minnesota 
state, county, watershed, and 
subwatershed spatial data, in the form of 

polygon shapefiles, were added to the 
ArcMap environment. Prior to adding 
these Minnesota shapefiles to ArcMap, 
ArcCatalog was used to reproject any 
data layers not in NAD83, UTM, Zone 
15N to this correct projection. These 
shapefiles included the two most 
important data layers, the polygon 
shapefile for the Zumbro River 
Watershed and the shapefile for the 
Zumbro River subwatershed project site. 
 The spatial and tabular data 
layers for the Minnesota DEM and the 
MLCCS land cover were added to the 
ArcMap environment. Additionally, the 
data layers for the STATSGO and 
SSURGO soil databases were added to 
each respective model. Again, prior to 
adding these data layers, the Project 
feature from Data Management Tools 
was used to reproject any layers not 
projected in NAD83, UTM, Zone 15N. 
 Spatial data for the SSURGO soil 
database was obtained as a polygon 
shapefile. The spatial data for the 
STATSGO soil database, on the other 
hand, is an older soil database system 
and was obtained as an interchange file 
(.e00). Import71, a stand alone utility 
from ArcView GIS that converts an 
ArcInfo interchange file to a more 
current coverage, was used to convert 
the STATSGO .e00 file to a coverage. 
The STATSGO coverage was then 
converted to a shapefile and added to the 
project.   
 The DEM, MLCCS, STATSGO, 
and SSURGO data layers for the state of 
Minnesota needed to be clipped to the 
Zumbro River subwatershed project site. 
To accomplish this, the Clip feature tool 
was used to clip the DEM, MLCCS, 
STATSGO, and SSURGO data layers to 
the subwatershed polygon. 
 Data layers for the R factor and P 
factor also needed to be created. Each 
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layer was created as a shapefile and 
clipped to the subwatershed project site 
and added to the ArcMap environment 
for each RUSLE model. The shapefiles 
were created so that each shapefile 
represented a single polygon that would 
be represented by a single value. 
 To further prepare the spatial 
data for modeling, the data layers would 
need to be converted from features to 
raster. The MLCCS, STATSGO, 
SSURGO, R factor, and P factor vector 
shapefiles were converted to raster 
format. This was completed using the 
Convert Features to Raster function 
within the Spatial Analyst extension. 
The output grids, as seen in Figures 4-8 
(10 meter spatial resolution), were 
generated at cell sizes of 10, 30, and 50 
meters. 

 
Figure 4. MLCCS grid (10 meter cell size) 
representing C factor (cover management) 
values. 

 
Figure 5. STATSGO grid (10 meter cell size) 
representing K factor (soil erodibility) values. 

 
Figure 6. SSURGO grid (10 meter cell size) 
representing K factor (soil erodibility) values. 

 
Figure 7. R factor grid (10 meter cell size) 
representing the rainfall-runoff erosivity value. 
 

 
Figure 8. P factor grid (10 meter cell size) 
representing the conservation practice value. 
 

With all the subwatershed layers 
in raster format, the last step was to 
generate a slope grid and a flow 
accumulation grid from the DEM. To 
create the slope grid, the Slope function 
feature was used. The output slope grid, 
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as seen in Figure 9 (10 meter spatial 
resolution), was generated at cell sizes of 
10, 30, and 50 meters. The flow 
accumulation grid was constructed using 
the ArcGIS extension, ArcHydro Tools, 
which was downloaded from the 
University of Texas at Austin Center for 
Research in Water Resources website. 

 
Figure 9. Slope grid (10 meter cell size). 
  

The Fill Sink feature under 
Terrain Preprocessing was used to fill in 
sinks within the DEM and create an 
output grid. This output grid was then 
used to determine flow direction using 
the Flow Direction feature. The flow 
direction output grid was then used to 
determine flow accumulation using the 
Flow Accumulation feature. The output 
flow accumulation grid, as seen in 
Figure 10 (10 meter spatial resolution), 
was generated at cell sizes of 10, 30, and 
50 meters. 

 
Figure 10. Flow accumulation grid (10 meter cell 
size). 

 With this last step, the raster 
grids for the subwatershed, MLCCS, 
STATSGO, SSURGO, R factor, P 
factor, slope, and flow accumulation 
were ready to be included in both 
RUSLE models at each of the three 
scales. 
 
RUSLE Attribute Data 
 
Prior to converting the MLCCS, 
STATSGO, SSURGO, R factor, and P 
factor vector data layers into raster grids, 
a new field needed to be added to each 
layer’s attribute table.  The new field 
added to the MLCCS attribute table 
housed the C factor values for each land 
cover polygon in the subwatershed.  

Table 1 highlights land cover 
types and their associated C factor 
values (soil erodibility based on cover  
 
Table 1. A sample of the 83 MLCCS land cover 
classifications and associated C factor values in 
the Zumbro River subwatershed. 
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management) for a sampling of the 83 
cover types found in the Zumbro River 
subwatershed using MLCCS. The C 
factor is a numerical value from 0 to 1 in 
which cover management values closer 
to 0 are less prone to soil erodibility. The 
C factor values were derived from a 
combination of data gathered from the 
USDA NRCS Minnesota office and 
several other soil erosion studies 
conducted in comparable climates and 
environments (i.e. Minnesota, 
Wisconsin, and New York). 
 The new field added to both the 
STATSGO and SSURGO attribute 
tables housed the K factor values for 
each soil unit in the subwatershed. Table 
2 highlights STATSGO soil units and 
their associated K factor values (soil 
erodibility). For the Zumbro River 
subwatershed there are 9 soil polygons. 
Table 3 highlights SSURGO soil units 
and their associated K factor values. For 
the Zumbro River subwatershed there 
are 1,396 soil polygons. 

The K factor is a numerical value 
from 0 to 1 in which soil erodibility 
values closer to 0 are less prone to soil 
erosion. The K factor values, including a 
diversity of other soil property 
characteristics, are found in separate 
tabular data that were added to the 
ArcMap environment, queried and 
joined to the spatial data layers attribute 
tables based on common fields. 
 Lastly, a new field was added to 
each of the R and P factor attribute 
tables in ArcMap. To reiterate, each 
spatial data layer consists of a single 
polygon that fits the entire extent of the 
subwatershed. The R factor (rainfall-
runoff erosivity) value for the entire 
Zumbro River watershed is 140. Due to 
the lack of availability of conservation 
practice (P factor) information for the 
Zumbro River subwatershed, a value of 

1 was added to the attribute table’s new 
field. As mentioned, this is a technique 
used by researchers and resource 
managers that lack conservation practice 
information for their models and simply 
remove this variable from having any 
impact on the model.  
 
Table 2. USDA NRCS STATSGO soil units and 
associated K factor values in the Zumbro River 
subwatershed. 
 

 
 
Table 3. A sample of the 1,396 USDA NRCS 
SSURGO soil units and associated K factor 
values in the Zumbro River subwatershed. 
 

 
 
RUSLE Modeling 
 
With the C, K, R, and P factor values 
now added to the attribute tables and the 
MLCCS, STATSGO, SSURGO, R 
factor, P factor, slope, and flow 
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accumulation layers converted from 
features to raster, the stage is now set to 
begin calculating both RUSLE models at 
each designated scale. 
 The remaining factor of LS 
(slope length and slope steepness) was 
calculated using the slope and flow 
accumulation grids generated earlier. 
The longer the slope length the higher 
amount of cumulative runoff and the 
steeper the slope the higher the runoff 
velocity which contributes to erosion. 
 The original equation to calculate 
the LS factor was an empirical equation 
published in the USDA Agriculture 
Handbook No. 537 (Wischmeier and 
Smith, 1978). The equation has 
undergone some minor changes 
including the equation published by 
Moore and Burch in 1986. 
 The LS empirical equation used 
for this project is: 
 
LS = (Flow Accumulation grid * cell 

size / 22.13)0.4 * (Sin(Slope grid 
* 0.01745) / 0.0896)1.4 * 1.4 

 
 The Raster Calculator in the 
Spatial Analyst extension of ArcMap 
was used to calculate the LS grid. The 
Raster Calculator expression of the 
equation above was: 
 
LS = Pow([Flow Accumulation grid] * 

10 / 22.13, 0.4) * Pow(Sin[Slope 
grid] * 0.01745) / 0.0896, 1.4) * 
1.4 

 
The output LS grid, as seen in 

Figure 11 (10 meter spatial resolution), 
was generated at cell sizes of 10, 30, and 
50 meters. 

The Raster Calculator was again 
used to calculate both RUSLE model 
grids to determine potential soil erosion 
risk in the Zumbro River subwatershed. 

 
Figure 11. Slope length and steepness grid (10 
meter cell size). 
  

The first iteration of the RUSLE 
model was: 
 
A = R * K * LS * C * P 
 
Where: 
 
A = computed average annual soil loss 
in tons/acre/year 
R = rainfall-runoff erosivity grid 
K = soil erodibility grid (STASGO) 
LS = slope length and steepness grid 
C = cover management grid (MLCCS) 
P = conservation practice grid 
  

The second iteration of the 
RUSLE model was: 
 
A = R * K * LS * C * P 
 
Where: 
 
A = computed average annual soil loss 
in tons/acre/year 
R = rainfall-runoff erosivity grid 
K = soil erodibility grid (SSURGO) 
LS = slope length and steepness grid 
C = cover management grid (MLCCS) 
P = conservation practice grid 

 
When comparing models, both 

model variables except for the K factor 
(STATSGO and SSURGO) are identical, 
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thereby controlling model calculations 
and allowing for a comparative analysis 
of the STATSGO and SSURGO soil 
databases. 
 
Comparative Analysis 
 
With both RUSLE models calculated 
using STATSGO and SSURGO soil 
databases at 10, 30, and 50 meter 
resolutions (cell sizes), the resulting 
output grids are ready to be sampled for 
comparison. Once sampled, XLSTAT 
and SPSS software were used to 
statistically analyze the data. 
 
STATSGO vs. SSURGO: Estimated Soil 
Loss (A) and Scaling Effect 
 
In comparing the degree of similarity 
and relatedness between STATSGO and 
SSURGO RUSLE models, the area and 
cell counts for each reclassified attribute 
class were compared between soil 
databases. In addition, the resulting 
RUSLE cell values for both models at 
each scale, A (tons/acre/year), were 
sampled within the subwatershed and 
compared using regression analysis. 
  
Sensitivity and Scaling Effect of 
Estimated Soil Loss (A) to Model 
Variables 
 
In comparing estimated soil losses (A) to 
variables for both RUSLE models, the 
cell values for the C, K, and LS grids 
were separately sampled at each scale 
and compared, using regression analysis, 
to their respective RUSLE cell output 
values. 
 
Sampling 
 
Simple random sampling was the 
technique used to sample the Zumbro 

River subwatershed. This technique was 
employed so that every cell in the 
subwatershed grid had an equal chance 
of being selected. Simple random 
sampling is probably the best method to 
ensure a bias-free sample for self 
contained units when data is available 
for all grid cells. It has several 
drawbacks, including high variance, 
sampled data not spatially balanced, and 
the potential for an increased probability 
that as the number of sampled data 
increases the greater the chance the 
sampled data does not provide a good 
representation of the entire population of 
grid cells (Theobald et al, 2005). 
 Hawth’s Analysis Tools for 
ArcGIS was used to create a point 
shapefile of randomly selected points for 
the subwatershed. The Generate Random 
Points feature under Sampling Tools was 
used to create the point shapefile.  
 To determine the sampling size 
needed to effectively sample the 
subwatershed, the following equation 
from PennState Cooperative Extension 
was employed: 

 
            ___P[1-P]____ 

  A2    +    P[1-P]
      n  =        __Z2              N____ 
              R   
 
Where: 
 
n = sample size required 
N = population size (number of cells) 
P = estimated degree of variance 

(i.e., 0.5 for 50-50, 0.3 for 70-30) 
A = precision desired, margin of error 

(i.e., 0.03, 0.05, 0.1 for 3%, 5%, 
10%) 

Z = based on confidence level: 1.96 for 
95% confidence, 1.6449 for 90%, 
and 2.5758 for 99% 

R = estimated response rate 
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For the purposes of this study, the 
variables include: 
 
n = sample size required 
N = 461,017 raster cells 
P = 60-40 = 0.4 
A = 5% = 0.05 
Z = 95% confidence level = 1.96 
R = 1 
 
So the sampling size equation for this 
study looks like: 
 

          0.4[1-0.4]_ __ __ 
  (0.05)2     +   0.4[1-0.4]
      n  =        __(1.96)2           461017___  
                    1 
 
where n = 368.499 = 369 for sample size 
required to adequately sample the 
subwatershed. 
 The sample size of 369 was used 
in the Generate Random Points feature 
in Hawth’s Analysis Tools extension to 
create a shapefile containing 369 
randomly placed points in the 
subwatershed. This point shapefile 
(Figure 12) was used to overlay with the 
RUSLE and model variable grids at each 
scale to collect cell values for 
comparative analysis. A total of 8,856 
cell values were sampled. 
 

 
Figure 12. Random sampling points shapefile 
created by Hawth’s Analysis Tools. 
 

Results 
 
Assessment of Soil Erosion Risk within 
the Zumbro River Subwatershed 
 
Raster maps of the R, K, LS, C, and P 
grid layers were integrated within the 
ArcGIS environment to generate 
composite maps of estimated erosion 
loss within the subwatershed project site. 

In all, six RUSLE empirical 
models were generated. Three models 
were run using the STATSGO soil 
database and associated K values at 10, 
30, and 50 meter resolutions 
respectively. The remaining three 
models were run using the SSURGO soil 
database and associated K values also at 
10, 30, and 50 meter resolutions 
respectively. The resulting six RUSLE 
subwatershed maps, Figures 19-24, can 
be found in Appendix A. The RUSLE 
maps were each overlaid onto a hillshade 
raster layer, created using the Spatial 
Analyst extension in ArcMap, to better 
visualize subwatershed topography. 

Each RUSLE map was then 
reclassified into six categories of 
estimated erosion loss. The erosion loss 
categories were developed using 
previous RUSLE model reclassifications 
from temperate U.S. regions as a guide. 

Table 4 provides an example of 
the estimated erosion loss categories 
used (and their soil loss values) for 
reclassification and the resulting cell 
count, proportion, and acreage for each 
erosion category. The resulting six 
reclassified RUSLE models at 10, 30, 
and 50 meter resolutions can be found in 
Appendix B (Figures 25-30). 

Table 4 shows two-thirds of the 
cells that make up each raster layer fall 
within the Very Low Erosion category 
where estimated soil loss is less than 3 
tons/acre/year. Within the U.S., 3 

 13



tons/acre/year is considered an 
acceptable loss. An evaluation of the 
maps reveals a significant proportion of 
these cells occur in the north, central and 
southern regions of the subwatershed, 
where more open water, wetlands, 
natural uplands, forests, and hay/forage 
cover types occur. 
 
Table 4. Examples of two RUSLE models 
reclassified into six estimated erosion loss 
categories and subsequent count, proportion, and 
acreage results. Soil loss, A, is in tons/acre/year. 
 

 
 
 High to very high estimated soil 
loss tends to occur more in the western 
and eastern regions of the subwatershed. 
Within this landscape mosaic a greater 
proportion of the subwatershed’s row 
crops are found. 

What is interesting is that the 
central and eastern regions of the 
subwatershed have greater slope and 
topography. Parts of the eastern region 
exhibit moderate to very high estimated 
erosion loss, possibly due to the density 
of agricultural lands like row crops and 
areas with moderately exposed soils, 
combined with topography. When parts 
of the western region that have moderate 
to very high estimated erosion loss are 
examined, you have a greater 
agricultural presence but significantly 
reduced topography.  

The inherent benefit of natural 
lowland and upland cover types and 
hay/forage practices becomes very 
evident if one examines the north, 
central, and southern regions of the 
subwatershed and reveals that regardless 
of significant slope and topography, 
minimal erosion is estimated. 

 
Comparative Analysis of the Use and 
Scaling Effect of STATSGO and 
SSURGO 
 
In examining the level of agreement or 
disagreement between a STATSGO-
based RUSLE model and a SSURGO-
based RUSLE model at 10, 30, and 50 
meter resolutions, the cell counts, 
proportions, and acreages of the 
reclassified maps are first considered. 
Three histograms, Figures 13-15, 
compare acreages and soil databases at 
each resolution. 
 The histograms reveal that the 
cell count, proportion of each erosion 
category from the total, and acreage are 
very similar between the RUSLE models 
that utilized STATSGO and SSURGO at 
each resolution. In addition to the 
similarity so far observed between the 
soil databases, there is also a trend at 
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Figure 13. STATSGO vs. SSURGO: total area of 
estimated soil loss, by erosion category, at 10 
meters resolution. 
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Figure 14. STATSGO vs. SSURGO: total area of 
estimated soil loss, by erosion category, at 30 
meters resolution. 
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Figure 15. STATSGO vs. SSURGO: total area of 
estimated soil loss, by erosion category, at 50 
meters resolution. 
 
each resolution in which calculated 
erosion values (A) from SSURGO-based 
RUSLE models score slightly lower, on 
average, in their estimations of soil loss. 
This can be seen from the basic 
statistics, specifically the means, for 
each RUSLE model in Table 5. 
 
Table 5. Basic statistics for STATSGO and 
SSURGO-based RUSLE models at 10, 30 and 50 
meter resolutions. 
 

 

 Lastly, a regression analysis was 
conducted to better understand the 
relatedness between STATSGO and 
SSURGO soil databases with respect to 
their estimation of soil erosion loss. 
Regression analysis is often used to 
model relationships between variables, 
determine the degree of the relationship, 
and can be used to make predictions 
based on the models. 
 Before using regression analysis, 
it must first be determined what type of 
regression is needed based on the 
available data. Linear (parametric) 
regression assumes the data are 
continuous, independent, normally 
distributed, and the variance is equal 
(homoskedastic). Semiparametric 
regression assumes the data are not 
normally distributed and preserves the 
simplicity of parametric regression while 
employing the flexibility of 
nonparametric regression. If the data are 
known not to be normally distributed, 
nonparametric regression would be 
better suited for analysis because it does 
not make assumptions about the 
frequency distribution of the variables 
and is much more flexible so as to more 
likely detect the relatedness between the 
data. 
 The data is known to be 
continuous and independent so the data 
must be tested for normality to help 
make the final determination on which 
type of regression to run. The lack of 
normality in data, including the presence 
of outliers, can falsely impact the 
correlation coefficient, R2, if normality 
is assumed incorrectly and linear 
(parametric) regression is used. 
 Using the Shapiro-Wilk, 
Anderson-Darling, Lilliefors and Jarque-
Bera tests for the data sampled from 
each grid at 10, 30, and 50 meter 
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resolutions, the presence or absence of 
normality in the data could be examined. 
 Scientific data from many 
disciplines exhibit strong nonconformity 
to parametric models (Yang, 2006). So it 
came as little surprise that each test 
calculated that the sampled data was not 
normally distributed, therefore strongly 
suggesting that for the sampled data, a 
nonparametric regression technique is 
the most suitable to detect the degree of 
relatedness.  
 The Robust Lowess 
nonparametric regression technique was 
used to determine the relatedness 
between STATSGO-based RUSLE 
samples and SSURGO-based RUSLE 
samples. Regression results have shown 
that estimated erosion loss values for 
STATSGO and SSURGO-based RUSLE 
models at 10, 30, and 50 meter 
resolutions are related. The correlation 
coefficient (R2) is 0.914, 0.928, and 
0.922 for 10, 30, and 50 meter 
resolutions respectively. The Robust 
Lowess regression for each scale can be 
seen in Figures 16-18. 
 

Robust Lowess Nonparametric Regression of Soil 
Erosion Risk (A): STATSGO vs. SSURGO (10 meter)
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Figure 16. STATSGO vs. SSURGO: Robust 
Lowess nonparametric regression for soil erosion 
risk (A) at 10 meters resolution. R2 = 0.914 
(blue: soil grid data, red: nonparametric 
regression). 

Robust Lowess Nonparametric Regression of Soil 
Erosion Risk (A): STATSGO vs. SSURGO (30 meter)

-10

10

30

50

70

90

110

130

0 50 100

SSURGO [A (tons/acre/year)]

ST
A

TS
G

O
 [A

 (t
on

s/
ac

re
/y

ea
r)

]

150

 
 
Figure 17. STATSGO vs. SSURGO: Robust 
Lowess nonparametric regression for soil erosion 
risk (A) at 30 meters resolution. R2 = 0.928 
(blue: soil grid data, red: nonparametric 
regression). 
 

Robust Lowess Nonparametric Regression of Soil 
Erosion Risk (A): STATSGO vs. SSURGO (50 meter)
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Figure 18. STATSGO vs. SSURGO: Robust 
Lowess nonparametric regression for soil erosion 
risk (A) at 50 meters resolution. R2 = 0.922 
(blue: soil grid data, red: nonparametric 
regression). 
 

For every RUSLE value 
calculated using the STATSGO soil 
database, there is a high degree of 
confidence that the estimated erosion 
loss value will be similar to the value  
calculated using the SSURGO soil 
database and vice versa. An important 
note to make, however, is that when 
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examining Figures 16-18, the relatedness 
of low to moderate estimated erosion 
values between RUSLE models is 
greater but for high to very high 
estimated erosion loss values the  
relatedness is less. These high erosion 
values are what drive the correlation 
coefficient down from 1 to 0.918, 0.928, 
and 0.922 for 10, 30, and 50 meter 
resolutions respectively. 
 
Assessment of Sensitivity and Scaling 
Effect of Estimated Soil Loss to Model 
Variables 
 
In examining the level of sensitivity 
between the model variables, LS, K, and 
C to estimated soil loss (A) at 10, 30, 
and 50 meter resolutions, the same 
principle behind using nonparametric 
regression analysis to determine 
relatedness is used as the section above. 
This includes lack of normality in 
conjunction with data being continuous 
and independent. Here, it is assumed that 
the greater the variable sensitivity to 
estimated soil erosion loss the greater the 
relatedness. 
 Table 6 below provides the 
coefficients of correlation (R2) for each 
sampled model variable regressed 
against its corresponding RUSLE model 
at 10, 30, and 50 meter resolutions. The 
Lowess nonparametric regression 
technique was used for this analysis of 
relatedness. In all, 18 nonparametric 
regressions were run. 

Table 6 suggests the model 
variables LS (slope length and 
steepness) and K (soil erodibility) are 
not related to their corresponding A 
values for either models that use 
STATSGO and SSURGO at any scale. 
For this project, LS and K variables do 
not seem to provide a highly significant 

and direct impact on RUSLE model 
outputs. 
 
Table 6. The correlation coefficients (R2) of 
model variables to estimated soil erosion loss 
(A) for each RUSLE model at 10, 30, and 50 
meter resolutions using Lowess nonparametric 
regression. 
  

 
 
 The model variable C (cover 
management) has a greater relatedness to 
RUSLE model outputs at each scale than 
LS and K, but not what would be 
deemed a significant relationship. For 
STATSGO-based RUSLE models the R2 
is 0.493, 0.426, and 0.514 at 10, 30, and 
50 meter resolutions respectively. For 
SSURGO-based RUSLE models the R2 
is 0.489, 0.411, and 0.516 at 10, 30, and 
50 meter resolutions respectively. It 
would seem that the C factor, which 
includes land cover types and associated 
soil exposure, may play a slightly greater 
role in determining estimated soil 
erosion loss for this project but not at a 
significant level. 
 
Conclusion 
 
The RUSLE empirical model was 
applied six times to the Zumbro River 
subwatershed during this study. The 
variables, R, LS, C, and P were identical 
for each model except for K (soil 
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erodbility). Three models used the 
STATSGO soil database at 10, 30, and 
50 meter resolutions and the remaining 
three models used the SSURGO soil 
database also at 10, 30, and 50 meter 
resolutions. 
 The spatial distribution and 
estimated erosion loss values within the 
subwatershed were significantly related 
when comparing STATSGO and 
SSURGO-based RUSLE models at each 
resolution. Relatedness of estimated 
erosion loss values (A) between the soil 
databases at each resolution, however, 
was greater for very low to moderate soil 
losses and lessened dramatically for high 
to very high soil losses. The mean A 
(tons/acre/year) for the STATSGO-
based RUSLE models were 4.23, 5.49, 
and 6.71 for 10, 30, and 50 meter 
resolutions respectively. The mean A for 
the SSURGO-based RUSLE models 
were 3.96, 5.15, and 6.28 for 10, 30, and 
50 meter resolutions respectively. 
 For this study, the C model 
variable was more related to each 
corresponding A than the other variables 
but not at a significant level. This infers 
that in the subwatershed, the C variable, 
cover management, is a better indicator 
for resulting RUSLE outputs, A. It is 
generally accepted that ground cover is 
the most important factor in the soil 
erosion process, especially when 
considering surface cover, canopy cover, 
surface roughness and prior land use 
(Yazidhi, 2003). 

Based on literature searches, 
additional assumptions would have led 
to the LS variable, slope length and 
steepness, as another good indicator for 
estimations of soil loss (Lee and Lee, 
2006; Liu et al, 2000). In these two cited 
research projects in Korea and China, 
areas under study occurred on steeper 
slopes than what is found in the Zumbro 

River subwatershed but it may be that 
the sampling method used here did not 
recognize any potentially existing 
relationship between LS and A. 

This study demonstrates that GIS 
is a valuable tool in assessing soil 
erosion modeling and in assisting the 
estimation of erosion loss at the 
subwatershed scale. But there are 
limitations that must be taken into 
account prior to modeling including the 
quality of data and the spatial resolution 
used. 

The RUSLE model exemplifies 
that spatial resolution is sensitive to the 
estimations of erosion so caution must 
be taken when selecting grid size. When 
considering soil erosion modeling at 
scales much smaller than the 
subwatershed level (i.e. townships, 
parcels, etc.), it is recommended that soil 
databases chosen be more complex than 
STATSGO. Lastly, caution must also be 
practiced with data since minor errors 
can exponentially increase and skew 
results thereby compromising the 
implementation of conservation 
practices, education, and funds to 
address soil erosion issues. 
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Appendix A. RUSLE models and estimated soil erosion loss (tons/acre/year) using STATSGO and 
SSURGO soil databases at 10, 30 and 50 meter cell sizes. Hillshading added for topographic visualization. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19. Estimated soil erosion loss at   Figure 22. Estimated soil erosion loss at  
10 meters resolution using STATSGO.   10 meters resolution using SSURGO. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20. Estimated soil erosion loss at   Figure 23. Estimated soil erosion loss at  
30 meters resolution using STATSGO.   30 meters resolution using SSURGO. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21. Estimated soil erosion loss at   Figure 24. Estimated soil erosion loss at 
50 meters resolution using STATSGO.   50 meters resolution using SSURGO. 
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Appendix B. Reclassified RUSLE models and categorized soil erosion loss using STATSGO and SSURGO 
soil databases at 10, 30 and 50 meter cell sizes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 25. Reclassified RUSLE model at   Figure 28. Reclassified RUSLE model at 
10 meters resolution using STATSGO.   10 meters resolution using SSURGO. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 26. Reclassified RUSLE model at   Figure 29. Reclassified RUSLE model at 
30 meters resolution using STATSGO.   30 meters resolution using SSURGO. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 27. Reclassified RUSLE model at   Figure 30. Reclassified RUSLE model at  
50 meters resolution using STATSGO.   50 meters resolution using SSURGO. 

 22


