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Abstract 

 

Agricultural producers have been using subsurface artificial drainage since the late 

1800’s. This allows areas that would have otherwise been deemed unproductive for 

agriculture to grow substantial yields. Data and records on drainage tile location are not 

consistent. In recent years, researchers have turned to aerial photography to map 

functioning drainage tiles. Knowing the location of drainage can allow more accurate 

hydrology studies. This research explores photo interpretation and compares it to remote 

sensing and decision tree analysis techniques to delineate subsurface agricultural drainage 

tiles in the Eagle Creek Watershed in Iowa, USA. 

 

Introduction 

 

Much of the Midwestern United States 

once contained numerous natural 

wetlands. Over the last 150 years 

agricultural producers have drastically 

altered the landscape by constructing 

subsurface tiles to drain these wetlands 

(Cooke, Badiger, and Garcia, 2001). The 

drained wetlands can be used as 

agricultural lands producing substantial 

yields.  

This network of drainage tiles 

bypasses natural riparian zones that once 

filtered the water. The drainage water 

contains nitrates, phosphorus, and 

pesticides from the agricultural fields 

and transports them directly to lakes and 

streams (Schilling and Helmers, 2008; 

Thompson, 2010; Goswami and Kalita, 

2009; Bakhsh and Kanwar, 2008; Naz, 

Ale, and Bowling, 2009; Northcott, 

Verma, and Cooke, 2000). 

 Contamination of many impaired 

waters throughout the Midwest can be 

attributed to artificial drainage systems 

(Green, Tomer, Di Luzio, and Arnold, 

2006). Drainage from Midwestern states 

in the Upper and Central Mississippi 

River Basins accounts for 39% of the 

nitrogen delivered to the Gulf of Mexico 

(Bakhsh and Kanwar, 2008). As a result, 

hypoxic conditions are present in the 

Gulf (Bakhsh and Kanwar, 2008). Out of 

the 1,200 water bodies assessed by the 

Iowa Department of Natural Resources, 

474 water bodies in Iowa were stated to 

have impaired water conditions (Iowa 

DNR, 2011).  

Determining the location of 

agricultural drainage tiles would benefit 

and enhance the ecological planning 

process. Crumpton, Stenback, Miller, 

and Helmers (2006) show the potential 

benefits of wetland filters for tile 

drainage systems. They describe how 

constructed wetlands serve as nutrient 

sinks for the tile drainage water before 
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entering streams and rivers, as shown in 

Figure 1. Exact locations of drainage tile 

would aid in targeting locations for the 

constructed wetlands. 

 

 
Figure 1. Outflow drainage tile. The photo was 

taken by Brian Phillips and used here with 

permission (North Carolina State University-

Department of Biological and Agricultural 

Engineering, 2012). 

 

The drainage network has 

resulted in multiple hydrological 

changes. Drainage tiles increase 

infiltration of precipitation, decrease 

evaporation, and lower the water table 

(Naz and Bowling, 2008). The 

accumulation of water being directly 

transported from fields to streams has 

altered the natural stream flow (Schilling 

and Helmers, 2008) (Figure 2).  

Tile effluent is the main water 

source into streams and rivers in 

agricultural areas (Cooke et al., 2001). It 

is very important to understand how tile 

drainage affects the hydrology and land. 

Many hydrologic computer models 

attempt to simulate the affects. However, 

the drainage tile location is often 

estimated. “APAPT, DRAINMOD, and 

RZWQM [hydrologic models] use 

parallel tile systems due to a lack of 

information about the location and 

characteristics of the drainage system 

and are sensitive to the spacing of the 

drains (Green et al., 2006).”  

 

 
Figure 2. Agricultural drainage tiles in action.  

Used here with permission (Busman and Sands, 

2002).  

 

According to Northcott et al. 

(2000), most drainage tile patterns are 

random. Knowledge of the location of 

drainage tiles would lead to more 

accurate hydrology models and in turn 

lead to better hydrological monitoring 

and planning.  

 

Study Site 

 

This study aims to locate drainage tiles 

at a watershed level. The Eagle Creek 

Watershed in Iowa USA is a 

hydrological unit 10 watershed. The 

study area is mainly located in Wright 

County with the southern tip located in 

Hamilton County. According to the 

United States Department of Agriculture 

(USDA) National Agricultural Statistics 

Service, approximately 84.8% of Wright 

County land is planted with corn or 

soybean crops (USDA, 2007). Figure 3 

shows the extent of corn and soybean in 

the Eagle Creek Watershed. Soybean 

and corn fields have the highest amount 

of drainage tiles (Thompson, 2010). 

 

Methods 

 

Data 

 

Photo Interpretation and Remote Sensing 

Data 
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Figure 3. Map of the study area showing corn 

and soybean crops. 

 

Several aerial photographs of the Eagle 

Creek Watershed area were available, 

however only one was chosen as 

appropriate for detecting subsurface 

drainage. The reason this photograph 

was chosen was due to a significant rain 

event occurring before photo acquisition. 

This allowed visualization of different 

moisture levels in the soil directly above 

subsurface drainage. A color infrared 

two foot pixel orthophotograph taken 

April 29
th

, 2007 was used. This photo 

was publically available at the Iowa 

Natural Resources Geographic 

Information Systems Library (Natural 

Resources Geographic Information 

Systems Library, 2012). Compliance 

with accuracy standards was ensured by 

the collection of airborne GPS data 

(Natural Resources Geographic 

Information Systems Library, 2012).  

Rain data was obtained from the 

NOAA Advanced Hydrological 

Precipitation Service (National Weather 

Service, 2012). Daily precipitation data 

was observed from 10 days prior to the 

photo acquisition date. This allowed for 

differences in rain fall across the Eagle 

Creek Watershed to be observed. The 

daily precipitation data was collected 

using radar and rain gauge data obtained 

from the National Weather Service and 

River Forecast Centers (National 

Weather Service, 2012).  

 

Decision Tree Analysis Data 

 

Several data layers were selected to be 

used for the Decision Tree Analysis. Soil 

characteristics, slope, and land use have 

often been used to define areas for 

artificial drainage (Naz and Bowling, 

2008). The Iowa DNR published a layer 

for soils requiring tile drainage for full 

productivity (Natural Resources 

Geographic Information Systems 

Library, 2012). This layer will be 

referred to as the SRTP. The SRTP layer 

incorporates soil characteristics as well 

as slope. The SRTP layer was created by 

combining two methods with data from 

the state-wide soils grid and the Iowa 

Soil Properties and Interpretations 

Database (Natural Resources 

Geographic Information Systems 

Library, 2012). The first method defined 

the area meeting these criteria: a slope 

less than or equal to 2 degrees, drainage 

classes of poorly drained to very poorly 

drained soils, and hydrological group 

code of A/D, B/D, or C/D (See 

Appendix A; Iowa State University 

Extension and Outreach, 2010). The 

second method defined the area meeting 

these criteria: a slope of less than 5 

degrees, a drainage code class of greater 

than 40, and a subsoil group of 1 or 2 

(See Appendix B and C; Iowa State 

University Extension and Outreach, 
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2010). The grids from the two methods 

were joined by using a conditional 

statement. If method one was true, then 

the method one value was used. 

Otherwise, the method two value was 

used. The final grid was then converted 

to a polygon layer and incorporated into 

the Decision Tree Analysis. 

The land use dataset obtained 

was the 2007 Cropland Data Layer 

(CDL) from the National Agricultural 

Statistics Service (USDA, 2008). “The 

CDL was produced using satellite 

imagery from the Landsat 5 TM sensor, 

Landsat 7 ETM+ sensor, and the Indian 

Remote Sensing RESOURCESAT-1 

(IRS-P6) Advanced Wide Field Sensor 

(AWiFS) collected during the current 

growing season (USDA, 2007b).” 

 

 Analysis 

 

Photo Interpretation/ Heads Up 

Digitizing 

 

The image was visually scanned to 

detect differences in reflectance values 

in tile drainage fields. Digitizing was 

conducted at a 1:5,000 meter to 1:6,000 

meter scale. Detected tile lines were 

manually digitized on-screen with the 

image as a background. This resulted in 

a line shapefile of tile lines. This method 

was a simple way to digitize drainage at 

a watershed scale without having 

substantial noise and it was less time 

consuming than probing the ground for 

the drainage tiles. 

 

Precipitation Analysis 

 

Remote sensing is a recent technique 

used to determine drainage tile locations 

(Naz and Bowling, 2008; Naz et al., 

2009; Verma, Cooke, and Wendte, 1996; 

Northcott et al., 2000; Thompson, 2010). 

However, this method is only applicable 

for assessment at a local scale. This 

technique has been shown to indicate 

drainage tiles with some level of 

accuracy (Naz and Bowling, 2008; Naz 

et al., 2009; Verma et al., 1996; 

Northcott et al., 2000; Thompson, 2010). 

This part of the analysis was included to 

cross-validate photo interpretation 

findings with a more automated method.  

Since this remote sensing method 

was only applicable at a field level, a 

random point generator was used to find 

several sample points within the Eagle 

Creek Watershed. The points generated 

were applied to each precipitation class 

uniquely. This was carried out to assess 

how accurately drainage tiles were 

detected in areas receiving varying 

amounts of precipitation prior to the 

aerial photo. The daily precipitation 

values from NOAA came in point 

shapefile format. A spline interpolation 

was performed with the points to display 

approximate rain values throughout the 

Eagle Creek Watershed Area. The spline 

method was chosen because it resulted in 

the smoothest interpolation raster and it 

passed through the original input data 

points (ESRI, 2011). The interpolation 

raster was then reclassified into seven 

classes (Figure 4). The seven classes 

were categorized by half-inch intervals 

of the ten day rain totals. Next, the 

interpolation raster was converted to a 

polygon layer. A random point was 

created in each of the rain value class 

areas as sampling points. The field in 

which the random point was located was 

analyzed using the remote sensing 

methods. The fields range in size from 

0.31 km
2
 to 1.35 km

2
. 

 

Image Analysis 

 

First, the ESRI Iso Cluster Unsupervised 
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Classification tool was used to classify 

the image of each field into twenty 

classes based on pixel values. 

 

 
Figure 4. Map of Eagle Creek Watershed with 

random sample points in each rain class. The rain 

classes are labeled with inches of total 

precipitation. Darker blue refers to more rain fall 

where lighter blue indicates less rain fall. 
 

Classification of twenty classes was 

successfully executed by Thompson 

(2010). The resulting rasters were 

overlaid with the aerial photograph and 

classes were categorized as associated 

with tile patterns. Whether or not a class 

was determined to be tile or non-tile was 

dependent upon each different 

agricultural field. Each raster was 

reclassified to a binary raster. The binary 

raster still needed to be cleaned up. The 

purpose of filters is to smooth the data 

by reducing local variation and 

removing noise (ESRI, 2012). Previous 

studies had successful results with 

directional filters (Naz and Bowling, 

2008; Naz et al., 2009); however when 

applied, directional filters created a 

fuzzy image and did not aid in the 

detection of tile drains. Multiple filters 

were experimented with on different 

fields. A 5x5 smooth filter resulted in 

cleaning up the most noise while 

preserving areas associated with 

drainage tile for all of the agricultural 

fields. The 5x5 smooth filter was applied 

to each binary image in this study. The 

rasters were then vectorized using ESRI 

software. Figure 5 displays image 

processing steps. 

The photo interpreted line 

shapefiles were compared with the 

remotely-sensed tile lines. A ten meter 

buffer was generated around each field 

set of remotely-sensed tile lines. Ten 

meters was chosen due to the fact that 

the area of dry soil around tile lines is 

about twenty meters in width. If a ten 

meter buffer is applied to the centerline, 

in theory, the area of dry soil should be 

included. The percentage of photo 

interpreted tile lines that fell within ten 

meters of the remote sensing tile lines 

was determined by using the following 

formulas. 

 
TLPIW10 = Total Length of Photo Interpreted 

Lines within 10 Meters of Remote Sensed Tile 

Lines 

 

TLPI = Total Length of Photo Interpreted Tile 

Lines  

 

 X 100 

 

Decision Tree Analysis 

 

Decision tree analysis has been used as a 

starting point in many studies to 

determine areas of tile drained soil. 
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Figure 5. Image analysis process: A. Original 

image; B. Unsupervised classification with 20 

classes; C. Tile/ Non-Tile reclassified raster; D. 

Image after smooth 5x5 filter; E. Vectorized tile 

lines; F. Tile lines overlaid on original image 

 

However, in this study this information 

was used to validate the photo 

interpretation tile layer. In the Crop Data 

Layer, the attributes of interest were the 

areas containing corn and soybeans. 

Soybean and corn fields have the highest 

amount of drainage tiles (Thompson, 

2010). The Crop Data Layer was 

converted to polygon format and the 

corn and soybean areas were extracted 

for analysis. The SRTP layer 

incorporated slope and soil 

characteristics of tile drained areas and 

required no additional pre-processing. 

An intersect operation was performed 

with the corn and soybean layer and the 

SRTP layer (Figure 6) to incorporate 

areas containing all characteristics of tile 

drained land in this study area. 

Descriptive statistics were 

performed using the formulas below to 

determine how many digitized tile lines 

fell into areas that were characteristic of 

tile drained fields (Decision Tree 

Classification Layer). 

 

 
Figure 6. SRTP layer. 

 
TLPIWDT = Total Length of Photo Interpreted 

Tile Lines that fall within the Decision Tree 

Classification Layer 

 

TLPI = Total Length of Photo Interpreted Tile 

Lines 

 

 X 100 

 

Results  

 

Figure 7 illustrates the final photo 

interpretation tile map. Table 1 indicates 

percentages of the photo interpretation 

tile lines that fell within ten meters of the 

remotely-sensed tile lines. The accuracy 
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percentages generally showed a trend of 

increasing accuracy with increasing 

precipitation values. The exceptions 

were field 4 and field 6, which was very 

close to field 5 in accuracy percentage. 

 
Table 1. The accuracy percentage is the 

percentage of photo interpretation tile lines that 

fall within ten meters of the remote-sensed tile 

lines. The rain values are shown to compare 

accuracy percentages for different agricultural 

fields. The rain value units are inches. 

Field # Percentage Rain Value 

1 25.7% 2-2.5  

2 52.2% 2.5-3 

3 54.8% 3-3.5 

4 92.3% 3.5-4 

5 74.1% 4-4.5 

6 73.9% 4.5-5 

7 89.1% 5-5.5 

 

The Decision Tree Analysis 

indicated 88.8% of the photo 

interpretation tile lines fell within areas 

that were consistent with characteristics 

of tile drained areas.  

 

Discussion 

 

Noise vs. Lost Data 

 

One issue that was encountered in this 

study was the issue of noise vs. lost data 

when implementing remote sensing 

processing. Throughout the remote 

sensing process, it is beneficial to 

remove as much noise/erroneous lines as 

possible for clarity. However, different 

image filters and vectorization settings, 

if set to remove noise, can also remove 

smaller tile lines or areas where tile lines 

are partially working. One area in the 

photo might have small areas of higher 

reflectance due to residue or tillage 

practices (Naz and Bowling, 2008). 

However, another area of the photo 

 
Figure 7. Final photo interpreted tile map. 

 

could have a small area of higher 

reflectance due to a partially working 

tile. The partially working tile may be 

erased depending on remote sensing 

settings. This issue was especially 

relevant when classifying the 20 

unsupervised classes of reflectance 

values into a binary raster of tile and 

non-tile classification. Some of the 20 

classes captured reflectance values of 

noise and partial tiles. Therefore, it was 

difficult to reclassify some of the initial 

classes. Unsupervised classification was 

used to keep the remote sensing methods 

as automated as possible in comparison 

to the photo interpretation methods. 

 

Rain Values 

 



8 

 

As mentioned, the usability of aerial 

photographs to detect tile drainage is 

highly dependent upon the precipitation 

values in the days prior to the photo 

acquisition. This affects soil moisture 

during the time the photo is taken. The 

difference in soil moisture creates 

differences in reflectance values in the 

imagery and is how the tile is delineated. 

The Eagle Creek Watershed 

precipitation classes were created to 

evaluate the accuracy of digitized lines 

as the precipitation values changes. The 

accuracy percentage gives an indication 

of how close the photo interpreted tile 

lines are in agreement with the remote-

sensed tile lines. The accuracy 

percentage showed an increasing trend 

as the rain values increased. The 

exceptions for this trend were fields 4 

and 6. This gives cause to the argument 

that higher values of rain yield higher 

accuracy in delineating drainage tiles. 

Both the photo interpretation process 

and the remote sensing process depend 

on precipitation values to view the soil 

moisture. Accuracy percentages may 

have been lower in fields with less 

precipitation because the differences in 

soil moisture were so slight it was 

difficult for either process to 

differentiate tile lines (Figure 8). 

Rain values in this study did not 

exceed 5.5 inches in the ten days before 

the aerial photo was taken. Therefore it 

is not known how much rain is too much 

or too little to detect drainage tiles. It is 

interesting to note that field 4 has a very 

high accuracy percentage. It may be that 

these tiles were recently constructed and 

in optimal working condition or 

differences in soil may account for the 

high accuracy. This would require 

further investigation. More sample 

points in each rain class may validate the 

positive correlation between 

precipitation values and accuracy of 

delineating drainage tile.  

 

 

 

 
Figure 8. Differences in a high rain value field 

with a low rain value field. A. Original image of 

field 7; B. Original image of field 1; C. Photo 

interpreted tile lines for field 7; D. Photo 

interpreted tile lines for field 1; E. Remote-

sensed lines for field 7; F. Remote-sensed lines 

for field 1. 

 

Decision Tree Analysis 

 

It was found that 88.8% of the photo 

interpretation tile lines fell into the area 

consistent with known characteristics of 

tile drained areas. This is a fairly high 

percentage and suggests photo 

interpretation is a successful method to 

map agricultural drainage tiles. 

 

Validating Findings/Existing Data 

 

The initial design of the study was to use 

remote sensing methods to cross-validate 

the photo interpreted lines. However, it 
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could be framed as the photo 

interpretation method validating the 

remote sensing methods. In the end, both 

involve some human decision making. 

The automated process needs human 

intervention when classifying the twenty 

pixel classes as tile or non-tile. 

Technology has not advanced enough to 

carry out a completely automated 

process. Also, more data on drainage 

records could solve the issue of 

validating the photo interpretation 

method as well the remote sensing 

method. 

As mentioned, it is generally 

very difficult to find existing data on 

agricultural drainage tiles, especially at a 

watershed scale. Public agencies are 

trying to produce continuous data 

throughout the watershed. However, 

private fields and drainage systems are 

out of their jurisdiction. These field level 

drainage networks are still vital to 

increasing hydrological model accuracy. 

With cooperation of private land owners 

and location of private drainage 

networks, photointerpretation techniques 

could be further validated. The mapping 

used in this study was in no way 

connected to private owner information. 

 

Conclusion 

 

In comparison with remote sensing 

techniques, the photo interpretation 

drainage tile lines generally showed 

improved accuracy with greater 

precipitation totals having occurred 

within the ten day period prior to the 

photo being taken. This suggests a 

higher rain value allows for the photo 

interpreted and remote-sensed tile lines 

to be in agreement. The photo 

interpretation tile lines fell within the 

decision tree analysis area 88.8% of the 

time. These findings suggest photo 

interpretation is a useful technique to 

map unknown drainage tiles. However, 

existing data or ground-truthing would 

validate these findings further.  
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Appendix A. Hydrologic Group. These hydrologic groups are used to estimate runoff from precipitation. 

Soils not protected by vegetation are assigned to one of four groups. They are grouped according to the 

intake of water when the soils are thoroughly wet and receive precipitation from long-duration storms. [The 

hydrologic group listed for complexes is the most limiting group of the soils identified in the map unit 

name (i.e., Ackmore = B and Colo = B/D; Ackmore-Colo complex = B/D).] Data was obtained from Iowa 

State University Extension and Outreach (2010). 

Hydrologic 

Group 

Description 

Group A Soils having a high infiltration rate (low runoff potential) when 

thoroughly wet. These consist mainly of deep, well drained to 

excessively drained sands or gravely sands. These soils have a high 

rate of water transmission. 

Group B Soils having a moderate infiltration rate when thoroughly wet. 

These consist chiefly of moderately deep or deep, moderately well 

drained or well drained soils that have moderately fine texture to 

moderately coarse texture. These soils have a moderate rate of water 

transmission. 

Group C Soils having a slow infiltration rate when thoroughly wet. These 

consist chiefly of soils having a layer that impedes the downward 

movement of water or soils of moderately fine texture or fine 

texture. These soils have a slow rate of water transmission. 

Group D Soils having a very slow infiltration rate (high runoff potential) 

when thoroughly wet. These consist chiefly of clays that have a high 

shrink-swell potential, soils that have a permanent high water table, 

soils that have a clay pan or clay layer at or near the surface, and 

soils that are shallow over nearly impervious material. These soils 

have a very slow rate of water transmission. 
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Appendix B. Drainage Code Class. These codes refer to the frequency and duration of periods of saturation 

or partial saturation during soil formation, as opposed to altered drainage, which is commonly the result of 

artificial drainage or irrigation but may be caused by the sudden deepening of channels or the blocking of 

drainage outlets. [The drainage class listed for complexes is the most limiting class of the soils identified in 

the map unit name (i.e., Ackmore = SP-P and Colo = P; Ackmore-Colo complex = P).] Drainage class 

abbreviations and code numbers assigned follow. Data was obtained from Iowa State University Extension 

and Outreach (2010). 

Drainage Code Class 

10 Excessive 

15 Excessive-Somewhat excessive 

20 Somewhat excessive 

25 Somewhat excessive-Well 

30 Well 

35 Well-Moderately well 

40 Moderately well 

45 Moderately well-Somewhat poor 

50 Somewhat poor 

55 Somewhat poor-Poor 

60 Poor 

65 Poor-Very poor 

70 Very poor 
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Appendix C. Sub Soil Group. [Subsoil group listed for complexes is the most limiting group of the soils 

identified in the map unit name (i.e., Steinauer = 1 and Shelby = 2; Steinauer-Shelby complex = 2). Data 

was obtained from Iowa State University Extension and Outreach (2010). 

Sub Soil 

Group 

Description 

1 Subsoil texture about the same as surface soil texture, not more 

than 34% clay, and subsoil favorable for crop growth. 

2 Subsoil moderately unfavorable for crop growth: slow 

permeability [35-40% clay content] or high plasticity. 

3 Subsoil very unfavorable for crop growth: silty clay and clay 

textures, very slow permeability [>40% clay content], or high 

plasticity. 

 

 

 

 


